Optimization and
Artificial Intelligence
in Civil and
Structural Engineering

Volume |l
Artificial Intelligence in Civil and
Structural Engineering

Edited by

B. H. V. Topping

NATO ASI Series

Series E: Applied Sciences - Vol. 221

Optimization and Artificial Intelligence
in Civil and Structural Engineering

Volume II: Artificial Intelligence in Civil and Structural Engineering

NATO ASI Series

Advanced Science Institutes Series

A Series presenting the results of activities sponsored by the NATO Science Committee,
which aims at the dissemination of advanced scientific and technological knowledge,
with a view to strengthening links between scientific communities.

The Series is published by an international board of publishers in conjunction with the
NATO Scientific Affairs Division

A Life Sciences Plenum Publishing Corporation
B Physics London and New York
C Mathematical Kluwer Academic Publishers
and Physical Sciences Dordrecht, Boston and London
D Behavioural and Social Sciences
E Applied Sciences
F Computer and Systems Sciences Springer-Verlag
G Ecological Sciences Berlin, Heidelberg, New York, London,
H Cell Biology Paris and Tokyo
1

Global Environmental Change

NATO-PCO-DATA BASE

The electronic index to the NATO ASI Series provides full bibliographical references
(with keywords and/or abstracts) to more than 30000 contributions from international
scientists published in all sections of the NATO ASI Series.

Access to the NATO-PCO-DATA BASE is possible in two ways:

— via online FILE 128 (NATO-PCO-DATA BASE) hosted by ESRIN,
Via Galileo Galilei, I-00044 Frascati, ltaly.

— via CD-ROM “NATO-PCO-DATA BASE” with user-friendly retrieval software in
English, French and German (© WTV GmbH and DATAWARE Technologies Inc.
1989).

The CD-ROM can be ordered through any member of the Board of Publishers or
through NATO-PCO, Overijse, Belgium.

il

Series E: Applied Sciences - Vol. 221

Optimization and
Artificial Intelligence in Civil
and Structural Engineering

Volume lI: Artificial Intelligence in Civil
and Structural Engineering

edited by

B. H. V. Topping

Department of Civil and Offshore Engineering,
Heriot-Watt University,
Edinburgh, U.K.

Springer-Science+Business Media, B.V.

Proceedings of the NATO Advanced Study Institute on
Optimization and Decision Support Systems in Civil Engineering
Edinburgh, U.K.

25 June—6 July, 1989

Library of Congress Cataloging-in-Publication Data

Optimization and artificial intelligence in civil and structural
engineering / edited by B.H.V. Topping.
p. cm. -- (NATO ASI series. Series E, Applied sciences : vol.
221
Contents: v. 1. Optimization in civil and structural engineering -
- v. 2, Artificial intelligence in civil and structural engineering.
ISBN 978-90-481-4202-6 ISBN 978-94-017-2492-0 (eBook)
DOI 10.1007/978-94-017-2492-0
1. Civil engineering--Mathematical models. 2. Structural
engineering--Mathematical models. 3. Artificial intelligence.
I. Topping, B. H. V. 1II. Series: NATO ASI series. Series E,
Applied sciences ; no. 221.
TA153.068 1992
624'.01'5118--dc20 92-26741

ISBN 978-90-481-4202-6

Printed on acid-free paper

All Rights Reserved

© 1992 Springer Science+Business Media Dordrecht

Originally published by Kluwer Academic Publishers in 1992

Softcover reprint of the hardcover 1st edition 1992

No part of the matenal protected by this copyright notice may be reproduced or

ronic or mechanical, including photo-
: e i +- I
Y

ge and retrieval system, without written

Contents

Part 11

Knowledge-Based Approaches to Engineering Design
0 T €Y o T AP

Expert Systems for Engineering Design
M.L. Maherouuuiii ittt iiiananns

Knowledge-Based Interfaces for Optimization
Problems
J.S. Gero and B.M. Balachandran..................................

A Knowledge-Based Expert System for
Optimal Structural Design
D O €3 3T 7o

A Knowledge-Based Model for Structural Design
B.H.V. Topping and B. Kumarccuiiiiiiiiiiinnennnn.

Knowledge-Based Preliminary Design of
Industrial Buildings
B. Kumar and B.H. V. Toppingccouiiiiiiiiiiiiiininnann.

A Prototype Environment for Integrated Design
and Construction Planning of Buildings
S.J. Fenves, U. Flemming, C.T. Hendrickson,
M.L. Maher and G. Schmitt

Water Resource Applications of Knowledge
Based Systems: Hazardous Material
Management, and Stream Quality Modeling
M.H. HOUCK ..o ettt

vi

The Development and Application of an Expert
System for Drought Management
R.N. Palmerouuiiiii ittt caneanns 177

The Potential Use of Decision-Support Systems for
Integrated River Basin Management
D.G. JamieSoncuuiinuiiiii it et 189

INLET: Access to Water Resources Management
Data Through a Natural Language Interface
R.N. Palmer and L.R. Spencec.ouiuiuenieieiiinnnnnnenn. 205

Learning from Optimal Solutions to Design Problems
J.S. Gero, C.A. Mackenzie and S. McLaughlin 217

Intelligent Systems for Pre and Post Processors for
Large Structural Analysis Computer Packages
A.T. Humphrey, R.A. Corlett and J.N. Trumpeter 251

A Knowledge Based System for the Diagnosis of the
Causes of Cracking in Buildings
IM. May and W. Tizanic.uuuieiiiiiiiieeinieeeeenneeeenns 263

Recent Advances in Al Based Synthesis of
Structural Systems
P. Hajela and N. Sangameshwarancceeeeeninnnnn. 285

Representing the Ground
D.G. TOIl ..t e e e e 307

The Inductive System: A New Tool in Civil Engineering
T. ATCISZEWSKI . .ot et 321

Preliminary Foundation Design Using EDESYN
T (- T 333

DIRECTOR

Dr B H V Topping, Department of Civil Engineering, Heriot-Watt University,
Edinburgh, United Kingdom

ORGANISING COMMITTEE

Professor C B Brown, Department of Civil Engineering, University of Wash-
ington, Seattle, Washington, United States of America

Professor J S Gero, Department of Architectural Science, Univesity of Sydney,
Sydney, Australia

Professor D Grierson, Department of Civil Engineering, University of Waterloo,
Ontario, Canada

Professor P W Jowitt, Department of Civil Engineering, Heriot-Watt Univer-
sity, Riccarton, Edinburgh, United Kingdom

Professor A B Templeman, Department of Civil Engineering, The University
of Liverpool, Lancashire, England

Dr B H V Topping, Department of Civil Engineering, Heriot-Watt University,
Edinburgh, United Kingdom

PRINCIPAL LECTURERS

Professor C B Brown, Department of Civil Engineering, University of Wash-
ington, Seattle, Washington, United States of America

Professor D G Elms, Department of Civil Engineering, University of Canterbury,
Christchurch, New Zealand

Professor J S Gero, Department of Architectural Science, Univesity of Sydney,
Sydney, Australia

Professor L Griindig, Institut fiir Geodasie und Photogrammetrie, Technische
Universitat Berlin, Berlin, West Germany

Professor D Grierson, Department of Civil Engineering, University of Waterloo,
Ontario, Canada

Dr M H Houck, Purdue University, West Lafayette, Indiana, United States of
America

A T Humphrey, GEC Marconi Research Centre, Great Baddow, Chelmsford,
Essex, England

Dr D.G. Jamieson, Thames Water, Reading, Berkshire, England

vii

viii
Professor A Jennings, Department of Civil Engineering, Queeen’s University of
Belfast, Belfast, United Kingdom

Professor P W Jowitt, Department of Civil Engineering, Heriot-Watt Univer-
sity, Riccarton, Edinburgh, United Kingdom

Professor U Kirsch, Department of Civil Engineering, Technion, Israel Institute
of Technology, Technion City, Haifia, Israel

Professor M.L. Maher, Department of Civil Engineering, Carnegie-Mellon Uni-
versity, Pittsburgh, United States of America

Dr R N Palmer, Department of Civil Engineering, University of Washington,
Seattle, Washington, United States of America

Professor G I N Rozvany, Department of Civil Engineering, University of Essen,
Essen, West Germany

Professor A B Templeman, Department of Civil Engineering, The University
of Liverpool, England

Professor G Thierauf, Department of Civil Engineering, University of Essen,
Essen, West Germany

Dr B H V Topping, Department of Civil Engineering, Heriot-Watt University,
Edinburgh, United Kingdom

Dr G N Vanderplaats, VMA Engineering, Goleta, California, United States of
America

PARTICIPANTS

Professor A Adao-da-Fonseca, Universidade do Porto, Gabinete de Estruturas,
Faculdade de Engenharia, Porto, Portugal

Dr G Akhras, Department of Civil Engineering, Royal Military College of Canada,
Kingston, Ontario, Canada

Professor D Altinbilek, Department of Civil Engineering, Middle East Technical
University, Ankara, Turkey

Dr T Arciszewski, Department of Civil Engineering, Wayne State University, De-
troit, Michigan, United States of America

A M Azevedo, University of Porto, Faculty of Engineering, Gabinete de Estruc-
tures, Porto, Portugal

Dr B W Baetz, Department of Civil Engineering, McMaster University, Hamilton,
Ontario, Canada

ix
J Baiuerle, Institut flir Geodisie und Photogrammetrie, Technische Universitit
Berlin, Berlin, West Germany

S Bitzarakis, Department of Civil Engineering, National Technical University,
Athens, Greece

Professor D G Carmichael, School of Civil Engineering, University of New South
Wales, Kensington, New South Wales, Australia

Duane Castaneda, Department of Civil Engineering, University of Washington,
Seattle, Washington, United Sates of America

S Coelho, LNEC - National Laboratory of Civil Engineering, Lisboa, Portugal

J B Comerford, Department of Civil Engineering, Bristol University, Bristol, Eng-
land

J W Davidson, Department of Civil Engineering, University of Manitoba, Win-
nipeg, Manitoba, Canada

I Enevoldsen, University of Aalborg, Aalbourg, Denmark

J H Garcelon, Department of Aerospace Engineering, University of Florida, Gaines-
ville, United States of America

Professor W J Grenney, Department of Civil & Environmental Engineering, Utah
State University, Logan, Utah, United States of America

Professor D F Haber, Department of Civil Engineering, University of Idaho, Moscow,
Idaho, United Sates of America

Professor P Hajela, Department of Aerospace Engineering, University of Florida,
Gainesville, Florida, United States of America

T B Hardy, Department of Civil Engineering, Utah State University, Logan, Utah,
United States of America

Professor M I Hoit, Department of Civil Engineering, University of Florida, Gaines-
ville, Florida, United States of America

Dr B Heydecker, Transport Studies Group, University College London, London,
England

D Howarth, Department of Civil Engineering, Heriot-Watt University, Riccarton,
Edinburgh, United Kingdom

Dr S Hernandez, Department of Mechanical & Environmental Engineering, Uni-
versity of California, Santa Barbara, Santa Barbara, California, United States of
America

J Jih, Dept of Aerospace Engineering, University of Florida, Gainesville, Florida,

X

United States of America

D Kallidromitou, National Technical University of Athens, Hydraulics Laboratory,
Athens, Greece,

K Kayvantash, Baumechanik Instatik, Universitat Essen, Essen, West Germany

Dr J O Kim, Department of Civil Engineering, University of Liverpool, Brownlow
Street, Liverpool, England

Dr V K Koumousis, Department of Civil Engineering, National Technical Univer-
sity of Athens, Athens, Greece

Dr B Kumar, Department of Civil Engineering, Heriot-Watt University, Edinburgh,
United Kingdom

Dr J Liu, Department of Civil Engineering, University of Liverpool, Brownlow
Street, Liverpool

Professor I A Macleod, Department of Civil Engineering, University of Strathclyde,
Glasgow

S Maheepala, Department of Civil Engineering, University of Newcastle upon Tyne,
Newcastle upon Tyne

Professor M Malafaya-Baptista, Faculdade de Engenharia, Laboratorio de Hidraulica,
Universidade do Porto, Porto, Portugal

Dr I M May, Department of Civil Engineering, University of Bradford, Bradford,
England

Profesor P H McDonald, Department of Civil Engineering, North Carolina State
University, Raleigh, North Carolina, United States of America

S Meyer, Department of Civil Engineering, Carnegie Mellon University, Pittsburg,
United States of America

Dr T C K Molyneux, Department of Civil Engineering, University of Liverpool,
Brownlow Street, Liverpool, England

Dr J Oliphant, Department of Civil Engineering, Heriot-Watt University, Edin-
burgh, United Kingdom

Dr M Oomens,Technische Universiteir, Civiele Techniek, Delft, The Netherlands
Professor G Palassopoulos, Military Academy of Greece, Athens, Greece

J C Rodrigues, Universidade de Coimbra, Departmento de Engenharia Civil, Coim-
bra, Portugal,

G Schoeppner, Department of Civil Engineering, Ohio State University, Columbus,

xi

Ohio, United States of America

Professor L M C Simoes, Departmento de Engenharia Civil, Universidade de Coim-
bra, Coimbra, Portugal

A Soeiro, Universidade do Porto, Departmento Engenharia Civil, Porto, Portugal

Dr D G Toll, School of Engineering & Applied Science, University of Durham,
Durham, England

Dr F Turkman, Dokuz Eylul University, Department of Civil Engineering, Bornova,
Izmir, Turkey

Dr G J Turvey, Engineering Department, Lancaster University, Bailrigg, Lancaster,
England

N A Tyler, Transport Studies Group, University College London, London, England

Professor G Ulusoy, Department of Industrial Engineering, Bogazici University,
Istanbul, Turkey

P Von Lany, Sir William Halcrow and Partners, Burderop Park, Swindon, Wilt-
shire, England

Dr S Walker, North West Water Authority, Warrington, England
Dr G A Walters, School of Engineering, University of Exeter, Exeter, England

Professor W E Wolfe, Department of Civil Engineering, Ohio State University,
Columbus, Ohio, United States of America

C Xu, Department of Civil Engineering, Heriot-Watt University, Riccarton, Edin-
burgh, UK

PREFACE

This volume and its companion volume includes the edited versions of the principal
lectures and selected papers presented at the NATO Advanced Study Institute on
Optimization and Decision Support Systems in Civil Engineering.

The Institute was held in the Department of Civil Engineering at Heriot-Watt
University, Edinburgh from June 25th to July 6th 1989 and was attended by eighty
participants from Universities and Research Institutes around the world. A number
of practising civil and structural engineers also attended. The lectures and papers
have been divided into two volumes to reflect the dual themes of the Institute
namely Optimization and Decision Support Systems in Civil Engineering. Planning
for this ASI commenced in late 1986 when Andrew Templeman and I discussed
developments in the use of the systems approach in civil engineering. A little later
it became clear that much of this approach could be realised through the use of
knowledge-based systems and artificial intelligence techniques. Both Don Grierson
and John Gero indicated at an early stage how important it would be to include
knowledge-based systems within the scope of the Institute.

The title of the Institute could have been: ‘Civil Engineering Systems’ as this
would have reflected the range of systems applications to civil engineering problems
considered by the Institute. These volumes therefore reflect the full range of these
problems including: structural analysis and design; water resources engineering;
geotechnical engineering; transportation and environmental engineering.

The systems approach includes a number of common threads such as: mathematical
programming, game theory, utility theory, statistical decision theory, networks,
and fuzzy logic. But a most important aspect of the Institute was to examine
similar representations of different civil and structural engineering problems and
their solution using general systems approaches. This systems approach to civil
and structural engineering is well illustrated in the first paper in the first volume of
these proceedings. The Decision Support aspect of the Institute was reflected by the
knowledge-based systems and artificial intelligence approach. Papers discussing
many aspects of knowledge-based systems and artificial intelligence in civil and
structural engineering are included in this volume.

I should like to thank all the members of the organising committee for their assis-
tance given so readily both before and during the Institute: Professor C B Brown,
Department of Civil Engineering, University of Washington, Seattle, United States
of America; Professor J S Gero, Department of Architectural Science, Univesity of
Sydney, Australia; Professor D Grierson, Department of Civil Engineering, Univer-
sity of Waterloo, Canada; Professor P W Jowitt, Department of Civil Engineering,
Heriot-Watt University, Edinburgh, United Kingdom; and Professor A B Tem-
pleman, Department of Civil Engineering, The University of Liverpool, United

xiii

xiv

Kingdom. The Director and Members of the Organising Committee would like to
thank the NATO Scientific Affairs Committe for funding the Institute. Without
the support of the Committee this Institute could not have been held.

I should also like to thank Professor A D Edwards, Head of the Department of Civil
Engineering and Dean of the Faculty of Engineering at Heriot-Watt University for
all the support he provided with this and other projects.

My sincere thanks are also due to the research students of the Department of Civil
Engineering at Heriot-Watt University including: David Howarth, Chen Chao Xu,
Jim Milne and John Hampshire who helped me considerably during the Institute. I
should also like to thank Erik Moncrieff who was responsible for typesetting many
of the papers in these proceedings and Asad Khan who so kindly came to my
assistance during the final stage of preparation of these proceedings.

Finally I should also like to thank Dr L. V da Cunha, Director of the NATO ASI
Programme for all his help in the organisation of the Institute.

Barry H V Topping

Department of Civil Engineering
Heriot-Watt University
Edinburgh

Knowledge-Based Approaches to
Engineering Design'

John S. Gero

The University of Sydney
New South Wales
Australia

Abstract This article introduces the fundamental notions of Knowledge-Based Systems
before introducing a variety of categories of knowledge-based systems in design. It distin-
guishes between systems used for analysis and those used for synthesis. It concludes by
discussing research which is likely to support future knowledge-based design systems.

1 Introduction

Design is one of the fundamental purposeful acts of humans. It commences with
dissatisfaction with the current state either because the current state is unsatis-
factory or because there is a perception that it can be improved. Thus, design is
always goal driven. However, one of the distinguishing features of design (from,
say, problem solving) is that in design part of the process involves determining
and deciding the goals. The goals in design are called functions. These are the
functions that are expected to be exhibited by the resultant artifact. The results
of designing are not built, constructed or manufactured artifacts, only descriptions
of artifacts. These descriptions describe the structure of the artifacts. Structure
is the set of elements and their relationships which go to make up the artifact.
Designing is concerned with transforming function to structure.

2 Computer-Aided Design

Computer-aided design has passed through a number of distinct phases. It com-
menced in the 1960s with a concern for graphical representation of objects being

1This lecture draws directly from Gero, J. S., (1989), ‘Expert systems for design,’ Proc. ICESEA
89, Wuhan, China.

1

B.H.V.Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 1-12.
© 1992 Kluwer Academic Publishers.

2

designed. This graphical genesis still manifests itself in today’s computer-aided
design systems. In the 1970s there was a concern for object modeling to support
graphical representation. The aspect being modeled was geometry and topology. It
is often simply called geometric modeling. There was the recognition that aspects
other than geometric were also needed, so many systems allowed the inclusion of
non-geometric attributes by attaching them to geometric entities.

By the end of the 1970s and the early 1980s geometric modeling had reached
sophisticated levels. At the same time engineering analysis tools were finding their
way into computer-aided design systems. The most prominent amongst these was
the finite element analysis method.

However, with some exceptions, computer-aided design systems were not con-
cerned with providing direct assistance to designers in their design decision-making
processes. The exceptions derived their impetus from operations research tech-
niques but did not find widespread acceptance. Recently, there has been renewed
interest in using computers as direct aids to design decision making.

3 What are Knowledge-Based Systems

3.1 Knowledge Engineering

Knowledge-based systems are computer programs in which the knowledge is explic-
itly coded rather than implicitly encoded. They make use of knowledge engineering.
Knowledge engineering is a subfield of artificial intelligence. It is concerned with
the acquisition, representation and manipulation of human knowledge in symbolic
form. Human knowledge is thought of as being reasoning (rather than the sim-
ple ability to acquire facts as you might find in an encyclopedia). Just as the
industrial revolution can be considered to have automated mechanical power, and
the computer revolution to have automated calculation, so knowledge engineering
automates reasoning.
Feigenbaum (1977) defines the activity of knowledge engineering as follows:

The knowledge engineer practices the art of bringing the principles and
tools of artificial intelligence research to bear on difficult application
problems requiring expert knowledge for their solution. The technical
issues of acquiring this knowledge, representing it, and using it appro-
priately to construct and explain lines of reasoning are important in
the design of knowledge-based systems ... The art of constructing in-
telligent agents is both part of and an extension of the programming
art. It is the art of building complex computer programs that represent
and reason with knowledge of the world.

The fundamental structure used to represent reasoning and, hence, knowledge,
is symbolic inference. Inference is based on well established logic principles and

3

has been extended to operate on symbols. The obvious advantage of inferencing
is that it does not require an a priori mathematical theory such as is found in,
say, hydraulics or structures. It can be used to manipulate concepts. Barr and
Feigenbaum (1981), talking about the applicability of knowledge engineering in
conceptual areas, state:

Since there are no mathematical cores to structure the calculational
use of the computer, such areas will inevitably be served by symbolic
models and symbolic inference techniques.

3.2 Expert Systems

Expert systems have been defined as knowledge-based computer programs which
use symbolic inference procedures to deal with problems that are difficult enough
to require significant human expertise for their solution.

e Human experts can be compared with conventional computer programs (Lans-
down, 1982).

e Human expertise arises from the possession of structured experience and
knowledge in a specific subject area. These skills grow as more and more
experience is gained.

e Human experts can explain and, if necessary, defend the advice they give and
are aware of its wider implication.

e Human experts determine which knowledge is applicable rather than pro-
ceeding algorithmically.

e Human experts can, and frequently have to, act with partial information. In
order to supplement this, they ask only sufficient and pertinent questions to
allow them to arrive at a conclusion.

Conventional computer programs differ markedly from programs which act as ex-
perts.

o They are usually complex and difficult for anyone other than their designers
to understand.

e They embody their knowledge of the subject area in terms designed for com-
putational efficiency such that this knowledge is intertwined with the control
parts of the program. Thus, the knowledge is implicit in the program in such
a way which makes it difficult to alter or change.

e They cannot suggest to their users why they need a particular fact nor justify
their results.

4

Thus, expert systems aim to capture the ability of human experts to ask pertinent
questions, to explain why they are asking them, and to defend their conclusions.
These aspects are unrelated to a specific domain of knowledge and apply to all
experts.

Expert systems are computer programs which attempt to behave in a manner
similar to rational human experts. They all share a common fundamental archi-
tecture even if the knowledge encoding mechanisms differ. An expert system will
have the following components:

an inference engine this carries out the reasoning tasks and makes the system
act like an expert

a knowledge base this contains the expert’s domain specific knowledge and is
quite separate from the inference engine

an explanation facility this interacts with both the knowledge base and the
inference engine to explain why an answer is needed at a particular point or
how a question can be answered; further it is used to explain how a conclusion
was reached or to explain why a specific conclusion could not be reached

a state description or working memory this contains the facts which have
been inferred to be true and those which have been found to be false during a
particular session, as well as the facts provided by the user of another system

a knowledge acquisition facility this allows the knowledge base to be modified
and extended

a natural language interface few expert systems have this yet.

4 Expert Systems in Design

4.1 Expert Systems for Design Analysis and Design
Synthesis

Expert systems were originally developed to carry out diagnosis using classification
concepts. They readily lend themselves to engineering analysis and evaluation that
is, design analysis. Design analysis may be considered as the interpretation of a
design description. The facts which describe an object and the knowledge by
which properties of the object can be derived can be modelled as formal axiomatic
systems. The advantage is that knowledge becomes amenable to formal proof
procedures and the mechanism of logical inference (Kowalski, 1983).

A design possesses attributes other than those facts by which it is represented.
These attributes can be described as derived, or implicit attributes, and a set of
such attributes constitutes the semantic content of the design. The major operation

5

in discovering meaning is interpretation by deductive inference, and the knowledge
about interpretation can be formalised as inference rules.

For any system the issue arises as to how the process of interpretation should
proceed. For a realistic set of inference rules the number of facts that can be derived
is likely to be very large. There will therefore be more work involved in asking of a
design: ‘What attributes can be inferred from its description?’; than asking: ‘Does
the design have this particular set of characteristics?’ The former suggests a data-
driven approach which starts with a design description and an attempt is made to
infer as much as the rules will allow. The latter is a goal-directed approach which
begins with various attributes and tries to discover if the design possesses those
attributes.

A system containing inference rules is of value even when there are no facts
constituting a design description. The ‘leaf nodes’ of an inference tree correspond
to requests for facts about the design and so can be handled interactively by means
of prompts. They could also be regarded as entry points to other axiomatic sub-
systems which interpret computer databases. When incorporated into a general
purpose inference system a dialogue is produced. The derived facts constitute the
meaning of the total system.

The question arises whether the same architecture (inference rules with back-
ward and/or forward chaining) used to carry out design analysis can be useful in
design synthesis. It has been shown that it can in those cases where the set of
design solutions is not large and where the components of the design and their
relationships are known. For more complex problems a different architecture is
needed.

Workable systems can be devised which operate on the basis of formal reasoning.
This is particularly so in the case of interpreting the properties and performances
of buildings where the theory by which interpretations can be made is well under-
stood. This is generally the case, for example, when evaluating the performance of
buildings for compliance with the requirements of building codes.

Expert systems of this type are also applicable to the synthesis of designs,
particularly for those classes of design problem which can be subdivided into inde-
pendent subproblems. But expert systems which are applicable to the more general
class of design problem can also be devised.

Expert systems for design analysis are well-described in the literature (Sriram
and Adey, 1986a; Sriram and Adey, 1986b; Sriram and Adey, 1987a; Sriram and
Adey, 1987b; Sriram and Adey, 1987c; Gero, 1988a; Gero, 1988b; Gero, 1988c;
Dym, 1985; Maher, 1987; Pham, 1988). Expert systems for design synthesis can
also be found in the above references as well as in Rychener (1988), Gero (1985),
and Gero (1987a). The foundations of the use of expert systems for design analysis
and design synthesis are presented in Coyne et al. (1989).

6

4.2 Classes of Expert Systems Applications in Design

There appear to be two fundamental classes of applications of expert systems in
design. These are:

1. expert systems for design analysis; and

2. expert systems for design synthesis.

The first class can be modeled by reasoning processes based on deductive reasoning,
whilst the second class requires abductive reasoning.

4.2.1 Expert Systems for Design Analysis In this class a design descrip-
tion must have been previously produced. The function of design analysis is to
transform the structure inherent in the description to a behaviour, so that the be-
haviour may be evaluated. The deductive knowledge in the knowledge base encodes
this knowledge.

If the knowledge is in rules it has the following form:

If structure attributes then behaviour attributes.
Often, the connection between behaviour and function is also encoded in the form:
If behaviour attributes then function performed.

Some expert systems encode the connection between description and structure in
the form:

If description attributes then structures attributes.

Figure 1 shows typical frameworks for the use of expert systems for design analysis.

4.2.2 Expert Systems for Design Synthesis In this class the function of
the expert system is to aid the human designer to produce the design description
or to produce the design description directly. Design synthesis is concerned with
transforming expected behaviour derived from function to structure and a resulting
design description. The abductive knowledge in the knowledge base encodes this
knowledge.

If the knowledge is in rules, it has the following form:

If behaviour attributes then structure attributes.
Often, the connection between function and behaviour is also encoded, in the form:
If function required then behaviour attributes.

Most expert systems encode the connection between structure and design descrip-
tion, in the form:

If structure attributes then design description.

Figure 2 shows typical frameworks for the use of expert systems for design synthesis.

Expert System |l User

(a) User provides all factual information

Expert System - User

Design Description

(b) User interprets the design description to provide factual information.

Expert System User

3

Design Description

() Expert system interrogates design description directly.

Figure 1. Frameworks for the use of expert systems for design anal-
ysis.

5 Knowledge-Based Computer-Aided Design

The knowledge representation used in the expert systems technology fails to ac-
count for fundamental notions in design. Designing, whether with the aid of com-
puters or not, involves transforming a description expressed in function terms to
a fixed description expressed in structure terms. Functions are the requirements,
specifications or goals. Part of designing involves determining the functions. Struc-
ture is the set of elements and their relationships that go to make up an artifact.
When looking at the description of structure there is no explicit function evident.
Similarly, function contains no structure. Since these two classes have no descrip-
tors in common how can one be transformed into the other.

A designer’s experience allows him to map function onto structure. This is

Expert System - User

Y

Structure

(a) Expert system produces structure only, generally in symbolic form.

Expert System - > User

A

Design Description

(b) Expert system directly produces the final design description, generally in graphical form.

Expert System - > User

CAD System

Y

Design Description

(c) Expert system produces the structure and drives a commercial CAD system to produce the
design description in graphical form.

Figure 2. Frameworks for the use of expert systems for design syn-
thesis.

9

how the abductive rules in expert systems encode this knowledge. However, such a
direct mapping does not allow for any reasoning about the transformation process
since it is a direct mapping. How does a designer incorporate new structures? It
is suggested that both function and structure are translated into a homogeneous
concept, namely, behaviour. Function is decomposed into expected behaviour. If
this behaviour is exhibited by the structure then the function is produced. From
the structure the actual behaviour can be deduced. In engineering the deductive
process of producing the actual behaviour is called ‘analysis.” Further it is suggested
that function, structure, and behaviour are bound together into a single conceptual
schema through experience.

This conceptual schema provides a framework for design activity. It can be
accessed via function and it reminds the designer of appropriate structures. It can
be accessed via structure and it introduces new functions into the design. It can
be accessed via behaviour and structures which produce that behaviour found.

A conceptual schema, called ‘prototypes,’ for knowledge-based computer-aided
design has been developed. A prototype is a generalization of groupings of design
elements. It provides a framework for storing and processing design experience
(Gero, 1987b). The prototype represents a class of elements from which instances
of elements can be derived. It contains the necessary function and structure de-
scriptions as well as behaviours and knowledge in a generic sense. Variables and
methods are also provided. An instance is derived by inheriting any property, vari-
able, and/or method from the generic prototype. A prototype may be related to
other prototypes and an instance may need to inherit properties from instances of
those prototypes. The system, therefore, constructs its own hierarchy.

A prototype needs to represent the function properties, structure properties,
expected behaviours, the relationships to any other prototypes necessary and the
knowledge required to find values for structure variables from the function descrip-
tion through behaviour. The function properties include the intended function,
and the expected behaviours as attributes and variables. The structure properties
include the vocabulary, their topology (these two produce a design description),
configurational knowledge, as well as the actual behaviours as attributes and vari-
ables of the prototype. The vocabulary will include those elements that are essential
to the existence of the prototype and those which are optional. The description
will include typological properties as well as other attributes, such as dimensions,
material, etc. Knowledge is required for every mapping from a property to another
property. Knowledge is required to map from the behaviour attributes to the be-
haviour variables and to the description required. There will be constraints both
on the function side and on the structure side. Constraints on the function side
will generally be translated into requirements to be met, whereas constraints on
the structure side will generally serve to prune the set of possibilities.

In addition to the elements described above, any design situation exists within
a particular context. This context serves to define particular areas of interest. In

FUNCTION PROPERTIES

Requirements

Vocabulary
Description
Configuration

Figure 3. The conceptual schema prototype (after Rosenman and
Gero, 1989).

some cases the context may merely define a set of function requirements whereas
in other cases the context may define some, if not all, of the structure properties.
For example, given that we want to design the engineering structure for a 50-storey
high office building of square plan this will define a requirement with regards to
wind loads and, in addition, may define the engineering structural system type and
the material.

Figure 3 shows the model of the prototype schema consisting of function prop-
erties, behaviour properties and structure properties all existing within envelopes
of knowledge and context. The function description is divided into function prop-
erties and behaviour properties where the function properties include the goal (or
goals) and the requirements while the behaviour properties include the required
(expected) and the actual behaviour attributes and variables.

11

The goal or goals are the intended function of the prototype. The requirements
are divided into those requirements which must always be met and those which
may have to be met depending on the particular problem at hand. The behaviour
properties form the core of this model. The expected behaviours are derived from
the function properties required whereas the actual behaviours are derived from the
structure description. However, the selection of the type of behaviour to be derived
from the structure description is dictated by the expected behaviours. For example,
given the structure description of a door, we would not expect to derive its aromatic
properties since this is not a property which has any bearing on its function. It is
in this behaviour core, where there are commensurate elements, which allows us to
evaluate the suitability of a prototype for a given design situation.

References

(1] Barr, A. and Feigenbaum, E. (Eds.), (1981), Handbook of Artificial
Intelligence, Vol. 1, William Kaufmann, Los Altos.

[2] Coyne, R. C., Rosenman, M. A., Radford, A. D., Balachandran, M. and
Gero, J. S., (1989), Knowledge-Based Design Systems, Addison-Wesley,
Reading, Massachusetts (to appear).

[3] Dym, C. L. (Ed.), (1985), Applications of Knowledge-Based Systems to
Engineering Analysis and Design, American Society of Mechanical
Engineers, New York.

[4] Feigenbaum, E. A., (1977), ‘The art of artificial inteiligence: themes and case
studies in knowledge engineering,’ IJCAI-77, William Kaufmann, Los Altos,
pp- 1014-1029.

[5] Gero, J. S. (Ed.), (1985a), Knowledge Engineering in Computer-Aided
Design, North-Holland, Amsterdam.

[6] Gero, J. S. (Ed.), (1987a), Expert Systems in Computer-Aided Design,
North-Holland, Amsterdam.

[7] Gero, J. S., (1987b), ‘Prototypes: A basis for knowledge-based design,’
Working Paper, Department of Architectural Science, University of Sydney,
Sydney.

(8

Gero, J. S. (Ed.), (1988a), Artificial Intelligence in Engineering: Design,
Elsevier/CMP, Amsterdam.

(9

Gero, J. S. (Ed.), (1988b), Artificial Intelligence in Engineering: Diagnosis
and Learning, Elsevier/CMP, Amsterdam.

12

[10] Gero, J. S. (Ed.), (1988c), Artificial Intelligence in Engineering: Robotics
and Processes, Elsevier/CMP, Amsterdam.

[11] Kowalski, R., (1983), Logic for Problem Solving, Elsevier-North Holland,
Amsterdam.

[12] Lansdown, J., (1982), Expert systems: their impact on the construction
industry, RIBA Conference Fund, London.

[13] Maher, M. L. (Ed.), (1987), Expert Systems for Civil Engineers: Technology
and Application, American Soc. Civ. Eng., New York.

[14] Pham, D. T. (Ed.), (1988), Expert Systems in Engineering, IFS
Publications/Springer-Verlag, Berlin.

[15] Rosenman, M. A. and Gero, J. S., (1989), ‘A conceptual framework for
knowledge-based design research at Sydney University’s Design Computing
Unit,” Artificial Intelligence in Engineering: Design—II, CMP, pp. 361-380

[16] Rychener, M. (Ed.), (1988), Expert Systems for Engineering Design,
Academic Press, New York.

[17] Sriram, D. and Adey, R. (Eds.), (1986a), Applications of Artificial
Intelligence in Engineering Problems— Volume I, Springer-Verlag, Berlin.

[18] Sriram, D. and Adey, R. (Eds.), (1986b), Applications of Artificial
Intelligence in Engineering Problems— Volume II, Springer-Verlag, Berlin.

[19] Sriram, D. and Adey, R. (Eds.), (1987a), Artificial Intelligence in
Engineering: Tools and Techniques, Computational Mechanics Publications,
Southampton, England.

[20] Sriram, D. and Adey, R. (Eds.), (1987b), Knowledge-Based Expert Systems
in Engineering: Planning and Design, Computational Mechanics
Publications, Southampton, England.

[21] Sriram, D. and Adey, R. (Eds.), (1987c), Knowledge-Based Expert Systems
in Engineering: Classification, Education and Control, Computational
Mechanics Publications, Southampton, England.

Expert Systems for Engineering Design

M. L. Maher

Department of Civil Engineering
Carnegie Mellon University
Pittsburgh

United States of America

Abstract The synthesis of design alternatives during the early stages of design is based
largely on experience. The use of an expert system approach promises to capture some of
this expertise and apply it in a systematic manner. The formalization of design knowledge
in an expert system is facilitated by an expert system shell developed specifically for design
applications. Example applications for structural design are presented.

1 Introduction

Design is a process of producing a description of a system or process to satisfy a set
of requirements. Design proceeds through several levels of abstraction, where more
information about the requirements as well as the evolving design description is
available as the process continues. In this paper, the focus is on the early stages of
design where the design knowledge is largely qualitative. During the early stages,
or preliminary design, the major components and subsystems are identified and
their composition is evaluated.

There are many books that provide definitions and elaborations of the design
process; in structural engineering such books include (2], (3], [5], [6]. The design
process can be considered as comprising different phases, synthesis being one of
these phases. Although the phases may not be addressed hierarchically for the
entire design cycle and are often carried out recursively, there is an inherent order in
which designers approach a design problem. The following represents one formalism
of the design process.

Formulation involves identifying the goals, requirements and possibly the vocab-
ulary relevant to the needs or intentions of the designer.

Synthesis involves the identification of one or more design solutions within the
design space elaborated during formulation.
13

B. H.V. Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 13-24.
© 1992 Kluwer Academic Publishers.

14

Evaluation involves interpreting a partially or completely specified design de-
scription for conformance with goals and/or expected performances. This
phase of the design process often includes engineering analysis.

Formulation occurs at some level of abstraction and provides enough informa-
tion to begin a synthesis process. Synthesis involves identifying the form of the
design solution. Evaluation, during the early stages of design, is usually based on a
subjective assessment of relevant criteria. Although synthesis and evaluation may
be based on associated quantitative models, the designer typically reasons about
these models in a qualitative manner.

The knowledge used during synthesis and evaluation of preliminary designs is
not well articulated. Experienced designers resort to trial and error less frequently
than novice designers when searching for an appropriate or satisfactory form, sug-
gesting that the use of knowledge-based expert systems to represent ‘experience’
may improve design synthesis and evaluation.

2 Expert Systems

Knowledge-based expert systems (KBES) have emerged from research in artificial
intelligence as practical problem-solving tools that can reach a level of performance
comparable to that of a human expert in some specialized problem domain.

An expert system can contain from three to six of the components illustrated
in Figure 1. All expert systems contain the following three basic components.

The knowledge base contains the knowledge specific to the domain of the
problem to be solved. The knowledge in an expert system can be classified ac-
cording to a spectrum ranging from deep to surface knowledge. Deep or causal
knowledge is knowledge of basic principles, such as Newton’s laws or static equilib-
rium. Surface or heuristic knowledge is knowledge developed through experience.
Analysis procedures lie close to the deep knowledge end of the spectrum, while
knowledge about combining and placing structural systems in a given building is
closer to surface knowledge.

The context contains facts that reflect the current state of the problem. The
organization of the context depends on the nature of the problem domain. The
context builds up dynamically as a particular problem is being considered, and is
used by the inference mechanism to guide the decision making process.

The inference mechanism manipulates the context using the knowledge base.
Typically, the inference mechanism applies the knowledge base to the context using
an approach suitable for a class of problems. The inference mechanism can embody
a number of problem solving strategies, such as forward chaining, where the system
reasons about the initial state of known facts until a goal state or conclusion is
determined to be true or appropriate. The problem solving strategy serves as a
formalization of the process used to solve a problem; it defines the focus of attention

15

Knowledge | | knowledge-Base
Acquisition
A
. Inference
Explanation 4——— Mechanism
1
\ ‘
}}J)?s:‘face «—— P Context

Figure 1. Architecture of an expert system.

at any point in the solution process. More detailed descriptions of problem solving
strategies can be found in (1], [4], [7].

There are three other components that are not necessarily part of every expert
system but are desirable in a final product.

The knowledge acquisition module serves as an interface between the ex-
pert(s) and the expert system. It provides a means for entering knowledge into the
knowledge base and revising this knowledge when necessary.

The explanation module provides explanations of the inferences used by the
expert system. This explanation can be a-priori, why a certain fact is requested,
or a-posteriori, how a conclusion was reached.

The user interface module provides an interface between the user and the
expert system, usually as a command language for directing execution. The inter-
face is responsible for translating the input as specified by the user to the form
used by the expert system and for handling the interaction between the user and
the expert system during the problem solving process.

A number of formalisms have been developed to represent the knowledge in a
domain. One such representation is the production system (PS) model [1]. The
principal feature of expert systems based on the PS model is that a clear distinction
is made between the knowledge-base, containing the model of an expert’s problem-
solving knowledge, and the control strategy or inference mechanism which manip-
ulates the knowledge base. In addition to the heuristic surface knowledge, which
consists of IF-THEN production rules encoding empirical associations based on ex-

16

perience, the knowledge-base can incorporate fairly deep knowledge comprised of
algorithmic procedures. Whereas the knowledge-base is specific to a given domain,
the control strategy is completely general.

The process of using a production system KBES is as follows. The user enters
some known facts about the problem into the context, the part of the KBES that
contains the knowledge about the particular problem at hand. Following its control
strategy, the inference mechanism locates the potentially applicable rules—those
whose condition portion is matched by the facts in the context—selects one of these
and fires it, that is, causes its action to be executed. The result of any action is to
add to or modify some aspect of the context; thus, new rules become candidates
to be fired, and a cylce of matching and firing is repeated in an ‘infinite loop’ until
a goal is satisfied or there are no more rules remaining to be fired.

3 EDESYN

EDESYN (Engineering DEsign SYNthesis) is a software environment for develop-
ing expert systems for design. The development of EDESYN was modelled after
the expert system ‘shell’ concept. An approach to developing an expert system
for structural design was implemented as HI-RISE [7]. This approach was gen-
eralized and expanded to facilitate the development of expert systems for design.
The design method is implemented as an algorithm to serve as an inference mech-
anism. The design knowledge is structured to provide a formalism for developing
a knowledge-base.

EDESYN solves a design problem by executing a plan that requires a series of
goals to be satisfied. Each goal represents a decision in the design process. Thus,

design solutions are formed by combining design decisions. Some salient features
of EDESYN are:

1. The planning is performed during the design process. Goals are organized in
the order best suited for the design problem under consideration.

2. Preliminary design is considered as the synthesis of design decisions at various
levels of abstraction. During synthesis, plan generation, plan execution, and
goal satisfaction techniques, combined with constraint-directed search, are
applied.

3. All feasible solutions for a plan are generated. The alternatives are evaluated
using heuristic criteria to identify the solution or set of solutions to be pursued
further.

EDESYN consists of five main modules: design knowledge-base, synthesis pro-
cessor, design context, user interface, and knowledge acquisition facility, as illus-
trated in Figure 2. When using EDESYN, the knowledge acquisition facility is

Knowledge "lKnowledge-Bas

Expert Acquisition
Synthesis
Processor
-Planner
-Search Algorithm
-Evaluator
User
User interface

Design
Context

Figure 2. Architecture of EDESYN.

invoked first. During knowledge acquisition, the domain specific knowledge is read
from files prepared by a domain expert. The domain specific knowledge is stored in
the knowledge-base and the synthesis processor is invoked. The user then provides
the problem specific information through the user interface to initialize the design
context and guides the synthesis of design solutions to augment the context.

The design knowledge-base includes decomposition, planning, constraint,
and evaluation knowledge. The decomposition knowledge is specified as systems
and subsystems, where each system comprises a set of attributes. An attribute
may be another system (i.e. subsystem), representing a synthesis node in a goal
tree, or a simple attribute, representing a terminal node. The synthesis node is
specified by another system. The terminal node is specified as a selection from
a set of discrete alternatives or the evaluation of a Lisp function. The planning
knowledge is associated with the system to identify the relevant attributes for the
current design situation and the order in which the attributes should be considered.

An example of a system definition for designing the lateral load resisting system
for a building is:

(system lateral
3D-lateral one-of (core tube 2D-orthogonal)
2D-lateral subsystem 2D-lateral

planning
If stories < 5 Then 2D-lateral

end system)

18

The design of a lateral load resisting system is described by the 3D lateral system
and the 2D lateral system. The 3D lateral system can be selected from a set of
alternatives and the 2D lateral system must be synthesized. The planning rule
indicates that buildings with less than 5 stories should only have one attribute,
i.e. the 3D lateral system is not appropriate.

The constraints are specified in the knowledge base as elimination constraints,
where each constraint is a combination of design decisions and design context that
is not feasible. The constraints are used during the synthesis process to eliminate
infeasible alternatives. Examples of constraints in the structural design knowledge
base are:

IF

stories > 30

3D-lateral = 2D-orthogonal
THEN not feasible

IF

2D-lateral-x/material = steel
2D-lateral-y/material = concrete
THEN not feasible

The first constraint eliminates a 2D-orthogonal lateral system for buildings with
more than 30 stories. The second constraint ensures that a concrete system is not
built in the y direction if the lateral system in the z direction is defined to be steel.

The evaluation knowledge is specified by a set of criteria for each synthesis
node or system. A criterion is described by a label, a weighting factor, a non-
dimensionalizing factor, a normalization factor, and a function to determine the
value of the criterion for a design solution. Example criterion for the lateral system
are stiffness, compatibility, cost, and ease of construction. The value for each crite-
rion is assessed using qualitative knowledge about structural systems since there is
not enough information during preliminary design for a quantitative analysis. For
example, stiffness could be assessed in a relative manner, where the designer knows
that in most cases a braced frame structure is stiffer than a rigid frame structure.

The synthesis processor uses the design knowledge in the knowledge base to
produce feasible design solutions consistent with the context. The overall algorithm
is based on a constraint directed depth first search through the systems in the
knowledge-base. The attributes of each system are assigned all legal values, where
a legal value is one that does not get eliminated by the constraints. All feasible
combinations are generated for each system, using the planning rules to define and
order the attributes. After the alternatives for a system have been synthesized, the
evaluation mechanism is invoked. The alternatives are compared for each criteria
to produce a set of non-dominated solutions, which are then ranked using the
preferences specified by the weighting factors. At this point, the solutions are

19

presented to the designer along with the evaluation information and the designer
chooses one solution for further consideration.

The design context initially contains the requirements and specifications as-
sociated with a particular design problem. For example, the intial context for a
structural design problem includes the number of stories in the building, the oc-
cupancy, the structural grid, etc. The context expands as synthesis proceeds to
include a tree of alternative solutions, where each node in the tree represents a
solution for an attribute of a system. Along with the solution tree, a hierarchy tree
is maintained to associate each attribute in the solution tree with the system for
which it was generated.

The user interface is implemented using a multi-window, menu driven inter-
action style. During the design synthesis process, the user can view and change
the design specifications, monitor the synthesis process as a tree of solutions is
generated, and view a single solution in more detail.

The knowledge acquisition facility transforms the information provided by
the expert to the frame based representation of the knowledge base. The ex-
pert provides the following design knowledge: preconditions, decomposition, con-
straints, evaluation criteria, and functions. The design knowledge is specified in
a simple syntax and stored in files. Preconditions are specified as a set of names,
default values, and allowable ranges. For example, one precondition may be wind
load and its default value 30 psf, and its allowable range > 0.0. Decomposition
knowledge includes the systems, subsystems, attributes, and planning rules. The
constraints are specified as infeasible combinations of elements. Each evaluation
criterion is sepcified by a name and a procedure for assigning a value using the
goals and elements associated with the current solution. Functions are specified
as Lisp functions that use the current state of the design solution to calculate the
value of a parameter.

4 STRYPES and STANLAY

EDESYN has been used to develop two expert systems for structural design:
STRYPES and STANLAY. STRYPES generates alternative combinations of struc-
tural systems and materials for a given building. STANLAY accepts a feasible
combination of structural systems and materials for a given building and gener-
ates alternative layouts and approximates the load requirements for the structural
components. The knowledge bases for each of these expert systems is described
below.

The knowledge-base for STRYPES is described by the decomposition knowledge
and the constraints for recomposition. The decomposition knowledge is illustrated
in Figure 3. The generation of alternative structural system types and materials
is decomposed into the lateral and gravity load resisting systems. For the lateral

20

STRYPES
Lateral Gravity
System System
[1
3D-Lateral 2D-Lateral-X 2D-Lateral-Y
2D-Horizontal Support Subdivide
2D-System Material

Figure 3. STRYPES Decomposition Knowledge.

Gravity-System

2D-Horizontal one-of (concrete steel-deck
panels waffle)
one-of (0-edges 2-X-edges 2-Y-edges
4-edges)

(none X-direction Y-direction)

Support

SubDivide one-of

Figure 4. Gravity System in STRYPES.

21

system, a selection of alternative 3D systems and 2D systems in each direction are
combined. The 3D systems are selected from 2D orthogonal systems and a 3D core
system.The 2D systems are selected from rigid frames, braced frames and shear
walls. For the gravity system, a selection of alternative 2D-horizontal systems
and support conditions are combined. For example, a possible gravity system is a
reinforced concrete slab supported on 4 edges without intermediate floor beams.
Another possible system is a steel deck supported on two edges with intermediate
floor beams.

An example of a system definition in STRYPES is illustrated in Figure 4. The
system represents the Gravity-System node in the decomposition tree. The alter-
native gravity systems are determined by combining selections from different 2D
horizontal types and the number of edges supported and the decision to subdivide
in one direction. The alternatives formed depend on the constraints and the de-
sign context. The use of a particular 2D horizontal type may depend on the lateral
system and on the span of the structural grid. These constraints are generalized
and stored in the knowledge-base.

The constraints on recomposition in STRYPES eliminate infeasible alternatives
to reduce the number of solutions considered. Some constraints are based on
design heuristics, eliminating alternatives that an experienced engineer would not
consider. For example:

IF

lateral-system/3D-lateral = orthogoanl-2D
2D-lateral-system/2D-system = shear-wall
stories > 35

THEN not feasible.

This constraint eliminates the use of 2D shear wall systems for buildings with more
than 35 stories. Other constraints eliminate unusual combinations of materials and
systems. For example:

IF

2D-lateral-system/2D-system = shear-wall
2D-lateral-system/Material = steel

THEN not feasible.

This constraint eliminates shear walls made entirely of steel.

The decomposition knowledge in STANLAY is illustrated in Figure 5. The lay-
out and load distribution is decomposed into three major decision groups: building
parameters, lateral system, and gravity system. The building parameters system
calculates and infers additional information about the building given the input
conditions. The lateral system is considered by system and component type. The
2D-Panels system places the appropriate systems on the structural grid and dis-
tributes the lateral load to each panel. The 2D-Panels system generates alternative

22

STANLAY
[1
Building Lateral Gravity
Parameters System System
20-Panels Core Beams Columns
Beams Columns Slabs
I [[
T |
Layout Layout .
Rigid-X Rigid-Y o Uplift-Y

Figure 5. STANLAY decomposition knowledge.

placement schemes. The core system locates the walls around the service shaft and
determines the lateral load acting on the core. The beams and columns systems
distribute the loads to each of the components using approximate analysis tech-
niques. The gravity system, similar to the lateral system, distributes the gravity
loads to the components using approximations.

An example of a system definition in STANLAY is illustrated in Figure 6. The
system represents the 2D-Panels node in the decomposition tree. The attributes of

23

2D-Panels
layout-rigid-X one-of (edges edges+1 . . .)
layout-rigid-Y one-of (edges edges+1 . . .)

Mover-X function . . .
Mover-Y function . ..
Uplift-X function . . .
Uplift-Y function . . .

Planning Rules:

IF (2D-Lateral- X = rigid-frame)
AND (2D-Lateral-Y = rigid-frame)
THEN (layout-rigid-X layout-rigid-Y . . .)

IF (2D-Lateral-X = braced-frame)

AND (2D-Lateral-Y = rigid-frame)

AND (TotalLength Y-Bays) > (TotalLength X-Bays)
THEN (layout-braced-X layout-rigid-Y . .)

Figure 6. 2D-panels system in STANLAY.

the 2D-Panels system include layout information and load information. The layout
attributes are selected and ordered by the planning rules. The load attributes,
i.e. overturning moment in each direction (M,.,) and uplift forces, are computed
by Lisp functions. The layout attributes have values that represent alternative
placement schemes, e.g. edges indicates that the panels are placed on the edges of
the building only, edges + 1 places a panel in the center of the building in addition
to the edges. The combination and use of the placement schemes are checked by
constraints for consistency with building geometry and intended occupancy. Other
constraints in STANLAY check the load attributes for each of the subsystems and
components for appropriate magnitudes.

24

5 Conclusion

An expert system shell for preliminary engineering design has been developed. This
shell allows an experienced designer to develop a knowledge-base by defining sys-
tems, constraints, evaluation criteria and planning rules. The inference mechanism
is a constraint directed search for alternative combinations of systems that are con-
sistent with the design context. The development of this shell is predicated on the
observation that forward or backward chaining rule based tools do not facilitate
the development of an expert system for design. The application of this shell to
preliminary structural design illustrates the approach to developing a knowledge-
base for design. The experience in developing these knowledge-bases has shown
that incremental development and reorganization is relatively easy and facilitates
the formalization of design knowledge.

References

[1] Brownstone, L., Farrell, R., Kant, E. and Martin, N., (1985), Programming
Expert Systems in OPS5, Addison Wesley.

[2] Cowan, H. J. and Wilson, F., (1981), Structural Systems, Van Nostrand
Reinhold.

[3] Fraser, D. J., (1981), Conceptual Design And Preliminary Analysis of
Structures, Pitman.

[4] Giarratano, J. and Riley, G., (1989), Expert Systems Principles and
Programming, PWS-KENT.

[5] Holgate, A., (1986), The Art in Structural Design, Oxford University Press.

[6] Lin, T. Y. and Stotesbury, S. D., (1981), Structural Concepts and Systems
For Architects And Engineers, John Wiley and Sons.

[7) Maher, M. L. and Fenves, S. J., (1984), HI-RISE: An Expert System For The
Preliminary Structural Design OF High Rise Buildings, Technical Report
R-85-146, Carnegie Mellon University, Department of Civil Engineering.

Knowledge-Based Interfaces for Optimization
Problems !

John S. Gero and Bala M. Balachandran
The University of Sydney

New South Wales

Australia

Abstract Optimization is a well understood process in design domains. Designers for-
mulate their design problems as single or multicriteria optimization problems and then se-
lect an approximate optimization algorithm to search for the optimal values for the design
variables. The formulation and algorithm selection procedures have been considered to be
activities which relied on substantive human knowledge. This paper describes a computer
system, OPTIMA, which formulates design optimization problems from a pseudo-English
description into canonical algebraic expressions. It then recognises the formulation and
selects appropriate algorithm(s) for its solution. Finally, it runs the selected algorithm(s)
and sends the results back to the original descriptions. Areas of expert knowledge involved
in carrying out the above tasks are identified. Such knowledge is explicitly encoded in
the system. The basic philosophy and key features of the system are described and are
illustrated with examples.

1 Introduction

The early uses of computers in engineering and architecture were for analytical
purposes. Later it was realised that certain classes of design decision processes
could be represented algorithmically and hence automated. The first of these pro-
cesses made use of the iterative model of design. This was extended to direct
design procedures based on optimization models. In this, however, analysis meth-
ods were not supplanted but continued to play a subordinate role in design. More
recently the widespread availability of symbolic programming languages coupled
with formal knowledge representation techniques has begun to allow us to incor-
porate specific knowledge into the computer system. This incorporation was not

1This lecture draws directly from Balachandran, M. and Gero, J. S., (1987), ‘A knowledge-
based approach to mathematical design modelling and optimization,” Engineering Optimisation
12, 2, 91-115.
25
B.H.V.Topping (ed.),

Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 25-55.
© 1992 Kluwer Academic Publishers.

26

previously achievable with such ease because of the non-numeric nature of much
of the knowledge.

A variety of automated design decision making systems have been developed
based on optimization notions and are widely used to solve many different classes of
problems (Gero, 1985). In using such systems the designer formulates the problem
as a mathematical model, runs the model through the optimization system, and
evaluates the results away from the computer. Here the computer is used only to
carry out the optimization process. Such systems normally do not provide flexibility
for design modifications. A knowledge-based approach aims to make optimization
an easier tool for the designer to use. During the last decade much of applied
artificial intelligence research has been directed at developing techniques and tools
for knowledge representation. Many different representations have emerged to
support the complex task of storing human expertise in a computable form.

The aim of this paper is to present a knowledge-based approach to design
decision making processes. A computer system called OPTIMA, which utilises
this approach will be demonstrated. The system includes a number of features
which are normally difficult to achieve using more conventional approaches. A
major part of the paper describes the methodologies, particularly the artificial
intelligence concepts, used to introduce these features into the OPTIMA system.
The current abilities of the system are illustrated through example problems from
two disparate domains.

2 Optimization in Computer-Aided Design

The traditional design process consists of a progressive series of four stages: a
feasibility stage; a preliminary design stage; a detail design stage; and a revision
stage. The principle of iteration is used at each stage of the process to improve the
design. Iteration is also used between the design stages. The designer may proceed
through the stages from feasibility to detailed design only to find that the design
does not meet all the design requirements. This may necessitate a return to the
feasibility stage. In practice, this results in considerable repetitive effort.

Since the introduction of computers much effort has been expended to improve
their use in the design process. In the past, designers spent most of their time
performing tedious, unchallenging tasks and much less time in developing creative
solutions. Since then, numerous computer-based systems have been developed to
assist the designers in those tedious and time consuming activities.

2.1 The Conventional CAD Process

The traditional design process outlined above has not been altered by the intro-
duction of the computer. The four stages of design remain unchanged and the
principle of iteration is still the method used to improve the design. The role of

27

the computer is limited to tasks such as calculations, analysis, and drafting. In
computer-aided design the design process is carried out through a computer model
of the design. At the early stages decisions about the resulting design are taken in a
heuristic way on the basis of incomplete knowledge about their consequences with
respect to design goals. As a result, the design must be analysed and evaluated in
the light of the design specification. If the goals are not met, the decisions must be
appropriately corrected and the process repeated. The overall aim of the designer
is to find a satisfactory solution within the limits of specified constraints. In a
sense, design may be considered an optimization task even if the specification does
not explicitly call for an ‘optimum design’, as designers will always try to improve
the performance of their designs. One drawback of this approach is that usually
it involves excessive computation before a satisfactory or near optimal solution is
found.

2.2 The Optimum Design Process

Over the last two decades optimization has been used to improve the efficiency
of the design process. ‘Optimum design’ means achieving the best solution to the
design specification given the constraints. An optimum design can be obtained
either as a result of iteration or by solving an optimization problem. The iterative
approach typifies the method used by designers to improve their designs. The
designer obtains information either graphically or numerically and on the basis of
this information changes the design. The decision as to what to change and how to
change reflects the experience-based insight of the designer. In this approach, the
values of the variables are changed or made firm sequentially. On the other hand,
in solving an optimization problem, the values of the variables that simultaneously
satisfy the requirements and optimize a set of objectives are established. The design
task is accomplished through an optimization model. Here it is assumed that the
measure of merit function and the complete set of constraints can be expressed
formally in terms of the design variables. In solving the optimization model, the
search for the best design is carried out mathematically in an organised manner.
Thus, it saves time in the design process.

A variety of computer systems have been developed based on optimization
concepts and widely used to solve many different design problems (Radford et al.,
1985; Gero, 1985). Although computers have been indispensable assistants in the
analytical process, the tasks such as problem formulation, algorithm selection and
data preparation are still manual tasks.

3 Knowledge-Based Approach

In recent years one of the most promising developments in computer technology has
been the work on knowledge-based systems (Hayes-Roth et al., 1983). A knowledge-

28

based system is a computer program which possessess a set of facts about a specific
domain of human knowledge and, by manipulating these facts intelligently, is able
to solve problems which ordinarily require human intelligence. The development of
knowledge-based systems is an attempt to emulate the human process of problem
solving. The power of such systems comes from the way their underlying knowledge
is represented and manipulated so that the systems can make a ‘knowledgeable’
contribution to complex problems in a specific domain or field of interest. Many
representation schemes have been suggested (Winston, 1984). In this research our
interest is centered on frames, predicate logic and production systems or rules.

The conventional CAD systems provide assistance to perform special tasks dur-
ing the design process. These tasks include one or all of the following: calculations,
analysis and graphical display. Knowledge-based design systems aim to aid the de-
signer during the entire design process, relying on comprehensive and complex
domain knowledge at each stage. These systems should be able to process different
types of information, specifically: graphical, numerical, mathematical, symbolic
and textual information. In using such systems, the designer will be able to use
graphical input, mathematical formulas, and textual and numerical information as
communication media.

An optimization system utilizing a knowledge-based approach aims to take a
more active role in design decision processes. In the context of optimum design, it
is desirable that such system should contain the following features. It should:

1. accept and represent a designer’s description of the problem in an effective
and manipulatible form;

2. formulate the problem into a canonical form of an optimization model pro-
viding functional relationships for objectives and constraints;

3. recognize the types of design variables and the functional types of objectives
and constraints;

4. select an appropriate optimization algorithm and carry out the solution pro-
cedure; and

5. provide a simple and semantically rich interface and flexible modeling fea-
tures.

It is obvious from this list that such a system should operate on information at
the same level as the designer. Thus, it must be able to represent in an effective
way the designer’s description of the problem and to recognize the information and
provide functional relationships to objectives and constraints. This involves ma-
nipulation of algebraic expressions and recognition of their types. Furthermore, in
order to identify the structure of the optimization models and to select appropri-
ate algorithms, it requires knowledge about the structure of canonical optimization

29

models and their solution methods. This form of knowledge needs to be encoded
explicitly using knowledge representation techniques.

4 Problem Description and Representation

A typical design problem will have many components, each of which will be re-
lated to many other components. The relationships between components are rep-
resented and processed during the design process. In an optimization process the
design constraints and the objectives specified by the designer must be represented
and processed in symbolic forms. Thus, it is important to use suitable represen-
tation schemata that will handle these tasks efficiently. In this section we present
the design problem description and the representation issues encountered in the
development of the system.

4.1 Description of Design Problem

The design description consists of a collection of facts about objects and their
properties interpreted as variables, and relationships between objects as sets of
statements interpreted as the design constraints and objectives. It is presumed
that the designer is able to establish the constraints that govern the design and
can express the design goals which can be expressed mathematically. In this work
a set of words and symbols have been predefined for use in the problem statement.
In the following sections the reserved words and symbols are in bold type.

4.1.1 Variables The variables which form the basis of any description can be
treated in terms of object-attribute-value triplets which effectively separate the
three concepts associated with variables.

objects any concept involved in the design domains;
attributes any property of an object;
value any value of an attribute

For example consider the following statement:
living_room length = 2 times kitchen width

Within this relationship, the objects and attributes involved are as follows:

Object Attribute
living_ room length
kitchen width

An object attribute can be given a value. Consider the statement:

bathroom length is 8.5 ft
In this statement, the object, attribute, and value is as follows:

Object Attribute Value
bathroom length 8.5

4.1.2 Constraints The design constraints reflect the requirements that must
be satisfied by the resulting design.The design constraints are stated by declaring
a maximum or minimum value for an attribute of an object or by specifying equal-
ity or inequality relationships among object attributes. The following are some
examples:

maximum living_room area is 300.0 sq ft
sum_of living_room width and kitchen width = house width

The first example declares that the maximum value of living_room area is 300.0
sqft. The second example establishes an equality relationship among the attributes
living_room width, kitchen width and house width.

4.1.3 Objectives The design goals or objectives are set up by the designer
and are optimized during the solution process. The design objectives are stated as
maximize or minimize an object attribute or a function of object attributes. Some
examples are shown below:

minimize house cost
maximize house area

The first objective is to minimize the ‘cost’ attribute of the object ‘house’ and
the second objective is to maximize the ‘area’ attribute of the object ‘house.’

4.2 Representation of Design Information

As discussed in the previous section, most of the design information may be stated
using the object-attribute-value concept. A typical design problem may involve
several objects with their attributes and attribute values. Although several dis-
tinct mechanisms may be used to represent this kind of information, the one which
handles this task efficiently is the frame-based representation (Minsky, 1975). Pro-
cedural knowledge is required to carry out certain tasks in the modeling process.
Frame representation allow procedures to be attached to a particular attribute of
an object. This representation technique has been used previously in design prob-
lems (MacCallum et al., 1985; Maher and Fenves, 1985). We discuss frames and
some of their appropriate features in the following sections.

31

4.2.1 Frames and their features In simple terms, a frame can be viewed as
a stereotypical representation of any object concept. It is typically represented as
a data structure whose name is that of the concept. A frame can have any number
of slots, each of which stands for an attribute of the object concept of interest; it
can hold values of the attribute and procedures that can be invoked under certain
conditions on the attribute value. A frame can have various types of links to other
frames. Examples of commonly used links are a-kind-of, is-a, and part-of. These
links allow unrestricted inheritance of attributes and attribute values.

Frame representation provides three key features which are important and use-
ful. First, they allow explicit representation of objects, attributes, and default
values. The notion of default value is very important in frame theory. The de-
fault value of an attribute of a concept can be normally used when there is no
value explicitly given for that attribute. Second, procedures can be attached to
the slots in the frames and can be executed automatically according to some spec-
ification. Examples for such specifications are if-needed, if-added, and if-removed.
These procedures are automatically invoked when the slot’s values are accessed or
stored or deleted. Such automatic procedure invocations are called demons, or,
sometimes, triggers. An important point is that demons allow for explicit repre-
sentation of procedural knowledge and of the context of their use because demons
are attached to parts of frames. Finally, frames can be related in a conceptual
hierarchy; attributes, values, and demons can be inherited from higher up in a
hierarchy. In other words, it is possible to define classes of data items that share
attributes, procedures, and default values. Normally inheritance works through
the a-kind-of and/or is-a slot.

For example, Fig. 1 shows a simple frame structure for a room. Whenever an
instance of a room, say room-1, is created it will inherit all the attributes of the
room frame. The following sections illustrate the representation of objects and
their relationships, and design constraints and objectives in more detail.

4.2.2 Representing Variables A design problem consists of one or more vari-
ables treated as objects, attributes, and values. There are relationships among ob-
jects and among attributes of objects. For example consider the following example:

kitchen is_a_kind_of rectangle
kitchen width is 10 ft.

A frame which represents the object kitchen is shown below:

name: kitchen

akind_of: rectangle

width: value : 10
unit : ft

32

name : room
slots : a_kind_of
value : rectangle
shape

default : rectangle

number_of_walls
default : 4

area
if needed : calculate_area

cost A
if exp_needed : express_cost

Figure 1. Example of a frame representation for a room.

Using this concept, all the objects, and properties and relationships between them
can be represented as a network of frames, each of which will have some form of
links to other frames.

4.2.3 Representing Constraints The representation and processing of con-
straints form an integral part of the design process. In mathematical design model-
ing it should be possible to express all the design constraints in terms of the design
variables. The constraints are expressed by declaring a maximum or minimum
value for any object attribute or by specifying equality or inequality relationships
among object attributes. Frames are used to represent the design constraints.
These constraint frames are constructed by making an instance of the ‘constraint’
frame, shown below:

name : constraint
slots: lhs:
rhs :

type :

The ‘lhs’ and ‘rhs’ slots represent the left hand side and right hand side expressions
of a constraint and the ‘type’ slot represents the relation involved between those
expressions. For example, consider a constraint used in steel beam design:

beam deflection <=1 / 360 times beam span

33
This constraint is represented as follows:

name : constraint—1

slots: lhs: (beam deflection)
rhs: 1/ 360 * (beam span)
type : less_than_or_equal_to

4.2.4 Representing Objectives The optimal design process is concerned with
producing designs which satisfy the design constraints and optimize one or more
objectives. The design objectives are expressed as maximize or minimize some
aspects of the design. The general form in which a design objective may be stated
as follows:

maximize Z
or
minimize 7

where Z is an object attribute or an expression of one or more object attributes.
The design objectives are represented by making an instance of the ‘objective’
frame shown below:

name: objective
slots: objective-function :
optimality-criteria :

For example, consider the following statement:
minimize beam weight

This statement indicates that the objective is to minimize the ‘weight’ attribute of
the object ‘beam’ and is represented as shown below:

name: objective-1
objective-function : (beam weight)
optimality-criteria : minimize

5 Problem Formulation and Recognition

In design optimization the major task involved is the formulation of the design
problem for mathematical programming; in other words building the mathemati-
cal model of the design problem. In this section we briefly outline the basic tasks
involved in constructing the mathematical model of the design problem and discuss

34

their required features and their implementation for automating this process. We
also describe the knowledge required to recognize various algebraic expression types
and illustrate how it can be encoded into the computer system. Production sys-
tems are employed to carry out algebraic simplification and problem identification
processes. We shall commence with a brief discussion of them.

5.1 Problem Solving Using Production Systems

Production systems were first proposed by Post (1943) as a general computational
mechanism but their use today stems from the work of Newell and Simon (1972).
Simply speaking a production system consists of three parts:

1. a rule base composed of a set of production rules;
2. a special data structure which is sometimes called the context; and
3. an interpreter, which controls the system’s activity.

A production rule is a statement cast in the form ‘If this condition holds, then
this action is appropriate.” The if part of the production rule states a set of
conditions in which the rule is applicable. The action or then part of the production
rule states the appropriate conclusions to make when the conditions are satisfied.
Production systems permit the representation of knowledge in a highly uniform
and modular way. Knowledge in production rules is both accessible and relatively
easy to modify. A further advantage of the production system formalism is the ease
with which one can express certain kinds of knowledge. In particular, statements
about what to do in predetermined situations are naturally encoded into production
rules. Furthermore, it is these kinds of statements that are most frequently used
by human experts to explain how they do their jobs (Gero, 1983).

There are two strategies employed in problem solving using production systems,
namely, forward chaining and backward chaining. The forward chaining process
starts with a collection of facts and tries all available rules over and over, adding
new facts as it goes, until no rule is applicable. In backward chaining a problem
solver starts with an unsubstantiated hypothesis and tries to prove it. The strategy
involves finding rules that demonstrate the hypothesis and then verifying the facts
that enable the rule to work.

These systems have two characteristic features which are particularly notewor-
thy. First, existing knowledge bases can be refined, and new knowledge added to
increase their performance. Second, systems are able to explain their reasoning,
making their logic practically transparent. Today, rule-based systems are used in
many applications.

35

5.2 Design Optimization Formulation

Formulation of a design optimization problem consists in constructing a mathe-
matical model that describes the behaviour of a physical system encompassing the
problem area. This model must closely approximate the actual behaviour of the
system for the solution obtained to be adequate and useful. At the stage of for-
mulating the optimization model the designer has to decide which quantities are
treated as variables and which are taken as fixed. The quantities whose values are
fixed are called design parameters and the quantities for which values are chosen
are called decision variables or design variables. Mathematical relations between
the design variables and the parameters constitute a design optimization model.
Formally speaking the basic tasks involved in constructing the design optimization
model can be described as follows:

1. identification of the parameters and variables involved in the design problem;

2. provision of functional relationships in terms of the variables that state the
objectives; and

3. provision of functional relationships in terms of the variables that represent
the design constraints.

In the following sections we discuss the key issues involved in the above activities.

5.2.1 Identifying Design Parameters and Variables The design descrip-
tion contains knowledge of design variables (e.g. room length, room width, etc.)
and of their relationships. As we discussed previously this knowledge is represented
as a network in which knowledge about a variable is encapsulated in a frame. The
information contained in such a frame mainly consists of a current value, units,
and relationships. The current value represents the value given by the designer or
the latest value calculated for a variable, the units slot contains the units in which
the value has been measured, and the relationship slot provides the dependency
of a variable upon some other variables. Each relationship, in turn, contains a list
of dependent variables. In finding the design parameters the system starts with
a set of variables for which fixed values have been provided and tries to find val-
ues for unknown variables using appropriate mathematical equalities. For example
consider the mathematical equality given below:

beam overall_depth = sum_of beam web_depth and
2 times beam flange_thickness

This equality is represented as below:

name : equality-1
slots : lhs: (beam overall_depth)
rhs : (beam web_depth) + 2 % (beam flange_thickness)

36

The above frame representation is transformed into a mathematical equality as
below:

(beam overall_depth) = (beam web_depth)
+ 2 % (beam flange_thickness)

It is then identified that there are three variables involved in this equality relation-
ship, namely beam overall_depth, beam web_depth and beam flange_thickness. If
the values for any two of these variables are known the value for the third variable
is found by solving this equation. All available mathematical equalities are tried
iteratively, updating the parameters as they are found until no further parameters
can be found. At the end of this process the system will be able to know which
variables are the design parameters and which variables are to be treated as design
variables. The mathematical equalities which have not been used to determine the
design parameters are treated as design constraints.

5.2.2 Formulating Constraints The design constraints simply describe de-
pendancies among design variables and parameters and are represented as mathe-
matical inequalities or equalities. As we illustrated in Section 4.2, each constraint
is encoded as a frame with three slots, namely left-hand-side part, right-hand-side
part and relationship type. In formulating a constraint into mathematical form,
the system starts with the description of that constraint obtained from the appro-
priate frame representation. We will use an example to illustrate the basic process
involved in transfoming the constraint description into canonical form. Consider
the following constraint used in the beam design:

beam deflection <= 1/360 times beam span
The frame representing this constraint is shown below:

name : constraint-1

slots: lhs: (beam deflection)
rhs : 1/360 % (beam span)
type : less_than_or_equal_to

Initially the above frame representation is transformed into mathematical inequal-
ity or equality form accordingly. Then it is rearranged into one of the following
forms.

lhs —ths <= 0
lhs —ths => 0
lhs —ths = 0

In the above example the result is

37

(beam deflection) — 1/360 * (beam span) <=0

At this stage the variables involved in the constraint are determined by scanning
the left-hand-side expression of the constraint. It then introduces known values to
those dependent variables. For those unknown dependent variables, the system uses
the knowledge of dependence of one variable upon some other variables. A variable
may have a functional relationship with some other variables. If such relationship
exists for a variable, it is obtained directly from the frame representing that variable
or by inheriting from another related frame. The functional relationship is then
substituted for the variable in the constraint. This procedure is repeated for every
newly introduced variable. The substitution process terminates when no further
functional relationship is found to any of the variables involved. The variables
which remain in the constraint are a subset of the design variables and are named
with algebraic symbols (e.g. x1, X3, etc.). After replacing the variables with the
appropriate algebraic symbols, the constraint is algebraically simplified to reduce
it to a canonical form.

In our example the variables which form the constraint are beam deflection and
beam span. Let us assume that the function describing the deflection of the beam
is stated as follows:

beam deflection = 5 * w x L"4 / (384 % E % I)
where

L = beam span

w = beam u.d.l.

E = beam modulus of elasticity

I = beam second moment of area

Further we assume that the following information has been provided.

L=10m, E =200 *10° kPa,
w = 600 kN/m and the beam is an I-beam.

In this case the functional expression for I will be inherited from the frame repre-
senting the object ‘I-beam,’ i.e.

I=(Bx*(D3—-4d3)+t*d3) /12
where

beam flange width

beam overall depth

beam web depth

T Ao w
Il

= beam web thickness

38
After the substitution process, the constraint is expressed in the following form:
5 % 600 % 10°4 / (384 * 200 % 10° * (B * (D"3 — d"3)
+t%d"3)/12)-10<=0

At this stage algebraic symbols are introduced to the variables and the constraint
becomes:
5 % 600 * 1074 / (384 * 200 * 10°6 * (x1 * (x2"3 - x3°3)
+ X4 % X3A3) / 12) -10<=0
where
x; = B = beam flange width
x2 = D = beam overall depth

x3 = d = beam web depth
X4 = t = beam web thickness

The above form of the constraint is then algebraically simplified to reduce it to a
canonical form as follows:

3200 * x; * X2A3 — 3200 * x; * X3A3 + 3200 * x4 * X3A3 =>1.5

5.2.3 Formulating Objectives In the optimization model the design objec-
tives must be expressed as computable functions of the design variables. The design
objectives are stated as maximize or minimize one or more aspects of the design.
For example consider the following statement:

minimize beam volume

This statement indicates that the ‘volume’ attribute of the object ‘beam’ is to be
minimized. Initially a functional relationship describing the volume of the beam
is obtained. The function describing the volume of the beam is obtained from the
appropriate frame.

minimize (beam span) * (beam sectional-area)
Given that the beam is an I-beam, it is obtained that

beam sectional-area =2 * B x T +d % t
where

B = beam flange width

T = beam flange thickness
d = beam web depth

t = beam web thickness

39

As illustrated in the previous section the substitution process is applied to each
variable. After the substitution process the objective function is expressed in terms
of the design variables.

minimize 10 * (2 * B+ T 4+ d * t)

Now algebraic symbols for the variables are introduced and the objective function
is algebraically simplified to reduce it to a canonical form.

minimize 10 * (2 % X; * X5 + Xs * X4)
i.e.

minimize 20 * x; * X5 + 10 * X3 * X4
where

x; = B = beam flange width

x5 = T = beam flange thickness
x3 = d = beam web depth

x4 = t = beam web thickness

5.2.4 Algebraic Manipulation The major mathematical operations involved
in the processes discussed in the above sections are substitution, simplification,
and equation solving. A system which allows this type of symbolic and numeri-
cal manipulation is MACSYMA (Martin and Fateman, 1971), a large interactive
computer system designed to assist scientists and engineers in solving mathemat-
ical problems. However, in the work described here an algebraic manipulation
package has been developed and implemented in Franz LISP (Wilensky, 1984). In
this implementation an algebraic expression is represented as a list structure con-
sisting of the operators and operands involved in the expression. The knowledge
involved in the algebraic simplification process is encoded as a set of production
rules. The form of these rules are similar to the rules normally used in design
grammars (Coyne and Gero, 1985). The basic form of a rule is ‘IF this pattern
matches THEN execute this action.” That is, a rule consists of a pattern part and
an action part. An example rule is shown below:

if (+P (restrict Ly is_list) = (restrict L, islist) +R)
then execute procedure-1

Where ‘+P’ means that the variable P can match with zero or more number of
items of any type, where as ‘(restrict L; is_list)’ indicates that the variable L,
can only match with an item in the form of a list. This rule indicates that if the
pattern part matches with an expression apply the ‘procedure-1’ to simplify it. The
procedures attached to the rules carry out the appropriate algebraic manipulation

40

and are written as LISP functions. The pattern part of a rule is represented as a
list which consists of variables and some key words. For instance the symbol ‘+’
and the keyword ‘restrict’ are used to indicate the type of items to which those
variables should match. Once a successful match is made against the pattern part
of a rule, the variables involved in that rule become instantiated to appropraite
values. Let us consider the following expression represented in the form of a list
structure:

(X3 + (X2 + X3) * (Y1 + Y3) - Ys)
When applying the above rule an attempt is made to match the pattern part of

the rule with this expression. As this match succeeds the variables in the pattern
part become instantiated as follows:

P —(X1+)
L; = (X; + Xs)
L=(Y1+Y;)
R=(-Ys)

At this stage the function ‘procedure-1’ is invoked to simplify the expression. As
a result of this the expression is transformed into a more reduced form as follows:

(X1+X2*Y1+X2*Y2+X3*Y1+X3*Y2—’YS)

In simplifying an expression, all available rules are tried iteratively, reducing the
expression as they are applied, until no rule is applicable.

5.2.5 The Canonical Forms of Optimization Models In this section we
illustrate the canonical forms of the optimization models. A single objective design
problem is formulated into the canonical form of:

Maximize Z(X)

subject to (X)) <G; 1=1,2,...,m
z; >0 7=1,2,...,n
where
Z(X) is the objective function

X = (z,%3,...,%,) is an n-component vector con-
sisting of design variables

g:(X) < G; are m constraint functions

41

In complex design optimization problems there often exist several noncom-
mensurable criteria which must be considered. This situation is formulated as a
multicriteria optimization problem (also called multiple objective or Pareto opti-
mization) in which the designer’s goal is to minimize and/or maximize not a single
objective function but several functions simultaneously (Cohon, 1978). The general
multicriteria optimization problem with n decision variables, m constraints, and p
criteria is formulated into the canonical form of:

Maximize Z(X) = [Z(X), Z2(X),...,Zy(X)]
subject to ¢(X)<G; 1=1,2,...,m

z; >0 7J=1,2,...,n
where
Z(X) is the multicriteria objective
function
Zy(X) is the k-th criterion of the

p individual criteria
X = (z1,23,...,2,) is an n-component vector
consisting of design variables

gi(X) < G; are m constraint functions

5.3 Recognizing Algebraic Expression Types

The canonical form of the optimization model represents the objectives and the
constraints of the design problem as mathematical expressions in terms of the de-
sign variables. In order to have the structure of the optimization model identified
by a computer system, it needs to be able to recognize the variables and the alge-
braic relationships between the variables in the constraints and objective functions.
In this work, a program has been developed in PROLOG (Clocksin and Mellish,
1981) that incorporates the necessary knowledge to recognize the types of vari-
ous algebraic expressions. One of the significant features of PROLOG is its very
powerful pattern matching facilities.

An algebraic expression, in its reduced form, is the sum of positive and/or
negative terms, each of which is expressed in terms of the variables. The type of an
algebraic expression is determined based on the types of the terms involved in that
expression. Common types of algebraic terms are linear, quadratic, posynomial,
and nonlinear. An algebraic expression is linear if all of its terms are of the linear
form. Thus, in order to decide on the type of an algebraic expression the type of
every term is to be analysed. This process can be simply encoded using the feature
of recursion which is a popular and powerful technique in symbolic computation. In
using PROLOG we take advantage of its automatic inference mechanism. Consider
the following recursive rules:

42

expression(A + B, linear) :— term(B, linear), expression(A, linear).
expression(A — B, linear) :— term(B, linear), expression(A, linear).

where ‘expression(E, T)’ means that T is the type of expression E. The first rule
simply states that an expression given in the form A + B, in which B represents its
last term is linear if both B and the rest of the expression A are linear. The second
rule deals with the case where the last term is a negative term. These two rules
are only used when the expression matches with either A + B or A — B. Hence we
need to define further rules to handle expressions with single term. The following
rules are added for this purpose.

expression(A, linear) :— term(A, linear).
expression(—A, linear) :— term(A, linear).

These rules simply define that an expression which has a single term, is linear if its
term is of the linear form. Now we need to define the necessary rules to determine
whether a given term is linear. An algebraic term is linear if it is represented by
a symbol or by a product of a symbol and a number. The following rules encode
these conditions.

term(A, linear) :- symbol(A).
term(A * B, linear) :— number(A) , symbol(B, linear).
Using the above set of logical statements the system is able to identify any kind

of linear expression. Similarly the necessary rules have been encoded to identify
other types of expressions such as quadratic, posynomial and nonlinear.

6 The OPTIMA System

A prototype system, called OPTIMA, which incorporates the knowledge described
in the previous sections, was developed and implemented as a general purpose
design assistant for computer-aided design situations. The major issues considered
in the development of this system are the following:

1. the system should provide simple and easy ways for designers to describe
their problems;

2. the system should employ an efficient representation of the design problem:;

3. the system should allow the designer to modify models, adding new design
parameters or relationships, during the design process;

4. the system should have the ability to represent and use the designer’s exper-
tise with respect to optimum design processes;

43

5. the system should have the ability to formulate the problem mathematically,
providing functional relationships for objectives and constraints;

6. the system should have the ability to recognize the type of functions which
represent the objectives and the constraints; and

7. the system should have the ability to select an appropriate algorithm and
carry out the solution procedure (Balachandran and Gero, 1987).

The OPTIMA system has been implemented on SUN Microsystems worksta-
tions. The domain specific knowledge is all represented as frames or production
rules and encoded in LISP as are the inference engines. The pattern matching
knowledge used to recognize variables and their relationships is encoded in PRO-
LOG. The optimization algorithms are all encoded in C. Figure 2 shows the data
flows in the OPTIMA system. The kernel of the system is the communication
controller which allows the three main components of the system, namely prob-
lem formulator, problem recognizer, and problem solver to communicate with each
other.

In the following sections two examples will be presented to illustrate the various
aspects of the system. One example deals with optimum dimensioning of architec-
tural floor plans and the other is concerned with optimum design of beams.

6.1 Example 1: The Floor Plan Problem

Here the formulation and solution to the floor plan problem originally formulated
by Mitchell et al. (1976) will be illustrated. This problem concerns the optimal
dimensioning of small rectangular floor plans for which a topology has been sepa-
rately identified (Fig. 3). The maximum and minimum area requirements of various
rooms are specified as design constraints.

The following is the listing of the problem description given to the system. The
reserved words and symbols used by the system are shown in bold.

house length = sum_of living_room length and bathroom length
and bedroom2 length

house width = sum_of living_ room width and kitchen width

living_room width = sum_of bathroom width and hall width

bathroom length = hall length

bedrooml width = kitchen width

bedroom?2 length = bedroom3 length

house and living_room and kitchen and bathroom and bedroom1
and bedroom2 and bedroom3 are_kind_of rectangle

sum_of living_room length and hall length = sum_of kitchen length
and bedroom]1 length

44

DESIGNER / USER

COMMUNICATION
CONTROLLER

mg >

Z M0 <0

DATA BASE

Figure 2. The data flows in the OPTIMA system.

45

BATHROOMI
BEDROOM2
LIVING ROOM
HALL
BEDROOM3
KITCHEN BEDROOM1

Figure 3. Dimensionless representation of a house layout.

sum_of living_room width and kitchen width = sum_of bedroom2 width
and bedroom3 width

house cost = sum_of living_ room cost and kitchen cost
and bathroom cost and hall cost and bedroom1 cost
and bedroom2 cost and bedroom3 cost

bathroom width is 8 ft.

hall width is 6 ft.

kitchen width is 10 ft.

bedroom2 width is 11 ft.

kitchen unit_cost is 2.0

bedroom2 unit_cost is 1.0

maximum living_ room area is 300 sq.ft.

minimum living_room area is 150 sq.ft.

maximum kitchen area is 120 sq.ft.

minimum kitchen area is 50 sq.ft.

maximum bathroom area is 65 sq.ft.

minimum bathroom area is 45 sq.ft.

maximum hall area is 72 sq.ft.

minimum bedroom]1 area is 100 sq.ft.

maximum bedrooml1 area is 180 sq.ft.

minimum bedroom3 area is 100 sq.ft.

maximize house area

minimize house cost

46

Figures 4, 5 and 6 present frames showing how the objects, objectives, and
constraints of this problem are represented in the system.

name : bathroom

slots : a_kind_of
value : rectangle

length

expression : (hall length)
width value : 8.0

unit : ft.
unit_cost

value : 2.5

Figure 4. Frame representing room data.

Figures 7, 8 and 9 show screen dumps of a session with the system during which
the floor plan problem was solved with two conflicting criteria, namely maximize
house area and minimize house cost. The problem was formulated as a canoni-
cal multicriteria optimization model by the system. Recognition of the types of
variables, constraints, and objectives, etc., was performed by the logic program-
ming system. Identification of the problem model and selection of an appropriate
algorithm were carried out using the rules given in Balachandran and Gero (1987).

6.2 Example 2: The Beam Design Problem

This problem concerns the optimum design of a simply supported, single span,
wide-flange beam presented in Fig. 10. The design goal is to minimize the weight
of the beam.

The following is the listing of the problem description given to the system.

beam span is 7.5 m
beam uniformly _distributed_load is 60.0 kN /m

name : objective-1
slots : objective-funtion
expression : (house area)

optimality-criteria
value : maximize

Figure 5. Frame representing a design objective.

name :@ constraint-1

slots : lhs
expression : (living_room area)
rhs
value : 300.0
unit : sq. ft
type

value : less_than_or_equal_to

name . constraint-§
slots : lhs
expression : (living_room length)
+
(hall length)
rhs
expression : (kitchen length)
+
(bedroom1 length)
type

value : equal_to

Figure 6. Figure 6 Design constraint frames.

47

48

aximize 24.808 * x1 ¢ 24.808 ° x2 + 24.668 © x3 T
inimize 21.888 * x1 < 20.868 * x4 + 20.868 * x2 <« 18.808 * x5 + 24.66@ ° x3

subject to

|14.808 * x1 <= 308
14.8088 * x1 => 158
18 * x4 <= 128

{18 * x4 «> 58
8.088 * x2 <= 65
8.888 * x2 «> 45

6 ¢ x2 <= 72

18 * x5 <= 188

18 * x5 => 108

11 * x3 <= 188

11 * x3 «> 188
13.888 * x3 <= 188
13.808 * x3 «> 180
ix1 + x2 - x4 - x5 = 0.8

continuous variables x1 to x5

x1 == 1iving_room_length
x2 == hall_length

x3 == bedroom3_length

x4 == kitchen_length

x5 == bedrooml_length

t

Enter command

-)I

Figure 7. The canonical optimization model constructed by the sys-
tem for the floor plan problem.

yes
| 7= list_facts.
the following pieces of information have been deduced

VARIABLES

No. of continuous variables = §
all the variables are continuous

0BJECTIVES

No. of objectives = 2
a1l the objective functions are posylinear

CONSTRAINTS

No. of less_than_or_equal_to constraints = 7
No. of greater_than_or_equal_to constraints = 6
No. of equality constraints = 1

Total number of constraints = 14
all the constraints are linear

ves

(I |

Figure 8. The information generated by the system when attempt-

ing to recognize the algebraic model of the floor plan prob-
lem.

beam is_a _kind_of I_section

beam deflection = 5 * w * L"4 / 384 * E * I

L = beam span

w = beam uniformly_distributed_load

E = beam elastic_.modulus

I = beam second_moment_of_area

beam bending stress = w * L"2 % D / 16 % I

beam shear.stress =w *x L /2 xd x t

d = beam web_depth

t = beam web_thickness

beam is_a_kind _of steel

maximum beam bending stress = 0.660 times beam yield stress
maximum beam shear_stress = 0.370 times beam yield_ stress
maximum beam deflection = 1/360 times beam span

sum_of beam web_depth and 2 times beam beam flange_thickness =

50

e ITC TP ITETUTTETEITEITITOT

““Noninferior Set Estimation (NISE)°**
hid Method A

48040000004 0000000IPIP0900000300TIOOS

scccweveo

Required data has been read successfully
Type a value for allowable error percentage
8.8

Sol. No weights ussed obj1 obj2

1.68 8.88 1041.59 1429.00

0.88 1.608 618.32 819.78

1.88 8.71 884.31 1148.31

1.88 8.85 724 .45 933.82

1.68 8.54 981.59 13€6.58

A11 segments have been explored

There is no other solutfon outside the current boundary
Solution search completed

e WN K-

Decision Variables

[P S —— —

So1.NO. x1 x2 x3 x4 x5 L
1 18.71 5.62 9.89 5.8 11.34
2 17.38 5.62 13.85 5.88 18.88
3 18.71 5.62 13.85 5.88 11.34
4 21.43 5.62 13.85 9.85 18.08
5 17.38 5.62 13.85 5.88 18.88J

Figure 9. The set of Pareto optimal solutions generated by the non-
inferior set estimation method for the floor plan problem.

60.0 kN /m
| | | l I | |

AN D>

}< 7.5 m 4’1

Figure 10. A simply supported beam with uniformly distributed load.

51

beam overall_depth
quotient_of beam web_depth and beam web_thickness <= 180
quotient_of beam web_depth and beam web_thickness <=
816/0.37 * Fy)0.5
Fy = beam yield stress
1 / 15 times beam span <= beam overall depth <= 1/8 times beam span
1 / 5 times beam overall_depth <= beam flange_thickness <=
1 / 3 times beam overall_depth
0.003 m <= beam flange_thickness <= 0.100 m
0.003 m <= beam web_thickness <= 0.100 m
minimize beam weight

Figure 11 shows how the description of the beam is represented symbolically in
a frame prior to further computation.

name : beam
slots : a_kind_of
value : steel I_section
span
value : 7.5
wnit m
udl
value : 60.0
wnit kN /m

bending_stress

expression w*L A2*D/ (16 *1)
shear_stress

expression : w*L/{2%d*t}
deflection

expression S*w*LA4/(384*EI}

Figure 11. Frame showing description of the beam.

7 Discussion

The central issue considered in this paper is the potential of introducing a knowledge-
based systems approach within the optimal design decision processes. We have
demonstrated the technical feasibility of developing a computer system that incor-
porates a variety of human expertise to assist in the optimum design process. The
OPTIMA system which was developed based on these notions is considerably more

52

:end

ru{nhuize 189968.6888 * x1 * x2 + 54058.6088 * x3 ° x4
subject to

« 8.8

2.568 * x3 * x5 => 8.428
124444.444 * x1 ® x5 ~ 3 - 124444444 * x1 * x4 ~ 3 + 124444 .444 * x3 * x4 ~ J «
> 728.388

xS «> 8.467

x5 <~ 8.875

x1 -~ 8.2088 * x5 => 8.8
x1 - 8.333 * x5 <~ 0.8
Ix2 => 8.883

Ix2 <= 8.1088

x3 => 8.683

x3 <= 8.188

x4 - 188 * x3 <~ 8.8

x4 - B4.644 * x3 <~ 8.8
x4 + 2 * x2 - x5 - 8.8

E.led * x5~ 13.758 * x1 * x5~ 3+ 13.758 °* x1 * x4 ~ 3~ 13,758 * x3 ° x4~ 3
<

icontinuous variables x1 to x5

x1 == beaml_flange width

x2 == beaml_flange_thickness
x3 == beaml_web_thickness

x4 == beaml_web_depth

x5 == beaml_overall_depth
Select optionf

Figure 12. The mathematical model constructed by the system for
the beam design problem.

versatile than existing optimization systems, and has a number of features which
are difficult to achieve using conventional approaches. The system demonstrates
the potential of knowledge-based systems in computer-aided design. The last sec-
tion illustrated the OPTIMA system solving a floor plan dimensioning problem

and a beam sizing problem. In summary it is worth emphasising some important
characteristics of the system.

1. It is general purpose and can be applied to a large variety of problem domains.

2. The system provides a simple and semantically rich interface and flexible
modeling features.

3. The information about a design problem is effectively represented and ma-
nipulated.

4. The system represents and uses a variety of human expertise with respect to
optimium design process.

Knowledge-based systems can provide a effective method of automating much
of the designer’s work. The key is that such systems contain explicit knowledge

coe seccee eeceecs

NONUINEAR PROGRAMMING ALGORITHM

This program solves a nonlinear programming
problem using the sequential linear
programming method

e 6 4 0 8 s 00

e 0 60 0 0 0 o

Language : Franz LISP, C

ececccccccccsercsecrcenscccctcstcccscnsessscsssnossene
NLP algorithm 13 being executed
Feasible solution found

SUMMARY OF THE RESULTS

minimun weight of the beaml = 187.615

decision variables

beanl_flange_width = 271.88 =
baaml_flange_thickness = 38.88

beaml_web_thickness - 18.8

beaml_web_depth = 764.88

beaml_overall_depth - 824.80

Figure 13. The final results of the optimum design with the decisions
listed.

and are able to manipulate that knowledge and reason with it. Although there are
several knowledge representation techniques, each provides advantages in specific
domains. In this work we have employed three different methodologies, namely,
frames, predicate logic and production systems according to their key characteris-
tics. The frame representation is more suitable for domains where complex struc-
tural descriptions are necessary to adequately describe the problem domain. Pro-
duction systems capture in a manageable representation schema a certain type of
problem-solving knowledge, particularly knowledge about what to do in a specific
situation. Logic based systems are preferable in problem domains which can be
readily axiomatized. The inadequacies of one representation technique can often
be effectively handled by an alternate technique. Recently there has been a great
deal of interest in developing a hybrid representation facilities by integrating two
or more different methodologies (Fikes and Kehler, 1985). Such integrated systems
can have the combined advantages of individual representation techniques.

Knowledge engineering provides tools and techniques which expand the role
of the computer in design. This work has demonstrated that knowledge-based
computer programs can capture and use designer’s knowledge explicitly in a more
useful way than is possible with traditional programming tools. Knowledge-based
systems generally offer alternate approaches to design decision making (Gero et
al., 1985).

Optimization has a useful and valid place in a decision making paradigm of
design, however, knowledge-based systems such as OPTIMA allow designers to
handle their problem easily and provide better interaction compared to most of
the conventional systems. The performance of this prototype is promising, but
further research is neccessary to explore the full potential of this new technology
for applications to design problems.

Acknowledgment This work is supported by a continuing grant from the Australian
Research Grants Scheme and by a Sydney University Postgraduate Research Studentship.

References

Balachandran, M. and Gero, J. S., (1987), ‘Use of knowledge in selection and
control of optimization algorithms,” Engineering Optimization, 12, 2,
163-173.

Clocksin, W. F. and Mellish, C. S., (1981), Programming in Prolog,
Springer-Verlag, Berlin.

Cohon, J. L., (1978), Multiobjective Programming and Planning, Academic
Press, New York.

Coyne, R. D. and Gero, J. S., (1985), ‘Design knowledge and context,’
Environment and Planning, B, 12, 419-442.

Fikes, R. and Kehler, T., (1985), ‘The role of frame-based representation in
reasoning,” Comm. A.C.M. 28, 9, 904-920.

Gero, J. S., (1983), ‘Knowledge engineering—future uses of computers in
engineering,” Computers and Engineering, IEAust., pp. 159-162.

Gero, J. S., (1985), Design Optimization, Academic Press, New York.

Gero, J. S., Radford, A. D., Coyne, R. D. and Akiner, V. T., (1985),
‘Knowledge-based computer-aided architectural design,” Knowledge
Engineering in Computer-Aided Design, J. S. Gero (Ed.), North-Holland,
Amsterdam, pp. 57-81.

55

Hayes-Roth, F., Waterman, D. A. and Lenat, D. B., (1983), Building Expert
Systems, Addison-Wesley, Reading, Mass.

MacCallum, K. J., Duffy, A. and Green, S., (1985), ‘An intelligent concept
design assistant,’” in Preprints Design Theory for CAD, University of Tokyo,
PP- 233-249.

Maher, M. L. and Fenves, S. J., (1985), ‘HI-RISE : An expert system for the
preliminary structural design of high rise buildings,” Knowledge Engineering
in Computer-Aided Design, J. S. Gero (Ed.), North-Holland, Amsterdam,
pp. 125-135.

Martin, W. A. and Fateman, R. J., (1971), “The MACSYMA system,’ Second
Symposium on Symbolic and Algebraic Manipulation, Los Angeles,
pp. 59-75.

Minsky, M., (1975), ‘A framework for representing knowledge,” The Psychology
of Computer Vision, P. Winston (Ed.), McGraw-Hill, New York,
Pp. 217-2717.

Mitchell, W. J., Steadman, J. P. and Liggett, R. S., (1976), ‘Synthesis and
optimization of small rectangular floor plans,” Environment and Planning,
B, 3, 37-70.

Newell, A. and Simon, H. A., (1972), Human Problem Solving, Prentice-Hall,
New Jersey.

Post, E., (1943), ‘Formal reductions of the general combinatorial problem,’
American Journal of Mathematics 65, 197-268.

Radford, A. D., Gero, J. S., Rosenman, M. A. and Balachandran, M., (1985),
‘Pareto optimization as a computer-aided design tool,” Optimization in
Computer-Aided Design, J. S. Gero (Ed.), North-Holland, Amsterdam,
pp. 47-69.

Wilensky, R., (1984), LISPcraft, W. W. Norton and Company, New York.

Winston, P. H., (1984), Artificial Intelligence, 2nd edn., Addison-Wesley,
Reading, Mass.

A Knowledge-Based Expert System for
Optimal Structural Design

Donald E. Grierson

Department of Civil Engineering
Solid Mechanics Division
University of Waterloo, Ontario
Canada

Abstract This lecture concerns the development of a knowledge-based expert system
for the computer-automated least-weight design of structural steel frameworks subject to
design code criteria and commonly used rules of design practise. The expert system is im-
plemented for steel design standards and utilizes corresponding databases of commerically
available standard steel sections. The numeric-based tasks of design are implemented in
FORTRAN routines ; these include first and second-order structural analysis, sensitivity
analysis, optimization and design verification. The knowledge-based tasks of design are
implemented in rules and procedures encoded in an artificial intelligence language, OPS83.
A knowledge base of rules controls the overall design synthesis process, which is organized
into three stages; Preliminary, Solution and Critique. For fixed structure topology and
known loads, the Preliminary stage determines material properties, section profile, fabri-
cation group and an initial section size for each member of the structure. The Solution
stage involves an iterative design process that controls the execution of FORTRAN routines
until convergence to a reasonable least-weight design of the structure occurs. The Critique
stage assesses the results of the Solution stage and suggests possible design improvements,
if any, based on rules of good practise commonly employed by experienced designers; the
Solution stage is then re-activated with the suggested changes implemented, or the results
of the final design are printed if no improvements are considered.

The lecture commences with the FORTRAN-based software system presented by the
writer in a previous lecture of the NATO-ASI, and first deals with the issues of concern
in converting a FORTRAN program to a knowledge-based expert system program. Then,
the issues involved in developing the expert system itself are addressed at the three stages
of the design process noted in the foregoing: Preliminary, Solution and Critique. Finally,
the expert system is applied for a number of design examples to illustrate its capability to
design structural steel frameworks of the type encountered in professional practise.

57

B.H.V.Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 57-100.
© 1992 Kluwer Academic Publishers.

58

1 Introduction

A routine activity in structural engineering offices is the design of structural steel
building frameworks in conformance with the strength/stability and stiffness pro-
visions of the governing steel design standard. To that end, a major task of the
designer is to size the girder, column and bracing members of the framework using
commerically available standard steel sections. This member-sizing design activity
is the concern of the knowledge-based expert system presented herein.

Typically, the sizing of the members of a steel framework involves an iterative
process wherein repeated computer analysis and design modification of the frame-
work is conducted until the design standards have been met and some measure of
economy has been achieved. In a previous lecture of the NATO-ASI, the writer has
presented a FORTRAN software system that automates this process to find the
least-weight design of structural steel frameworks [1]. The system is based upon
optimization theory that enables the entire design of a steel framework for both
strength and displacement requirements to be conducted in a single computer run.
The design is carried out in complete conformance with the provisions of a specified
steel design standard (currently for North America [2,3,4]), and the members are
automatically selected from a corresponding database of commercially available
standard sections (currently Canadian or American).

As noted in the previous lecture, the FORTRAN software system has a variety
of features that relate directly to the provisions of the governing steel design stan-
dard. Default values are provided for Young’s modulus, yield stress, etc. Bolted
connections for truss members may be accounted for, as well as various gusset-
plate thicknesses for back-to-back double angle sections. Members with symmet-
rical sections may be considered in strong-axis or weak-axis bending. The local
buckling classification of each member section is automatically calculated. The
effective length factor for each member is automatically calculated, for sidesway ei-
ther prevented or permitted. Both out-of-plane and compression flange bracing are
accounted for, and the unbraced compression flange length for each flexural mem-
ber is automatically calculated. During a design run, a complete clause-by-clause
verification is conducted for the member strength and structure stiffness provisions
of the specified steel design standard. Specifically, standards-based provisions are
verified for member slenderness (tension and compression), axial strength, bending
strength, shear strength and combined axial and bending strength. Also verified
are any user-specified requirements concerning allowable deformation of the struc-
ture (e.g., limited lateral sway).

The FORTRAN software system for the computer-automated sizing of least-
weight girder, column and bracing members of structural steel frameworks [1] is
widely used in professional practice (in North America) and embodies a broad base
of computational and design knowledge. For example, commencing and then con-
trolling the iterative design process so as to ensure convergence to a reasonable

59

design solution involves considerable computational expertise that has been gar-
nered over many years of research. In fact, maintaining and updating the system is
primarily concerned with making adjustments and additions to this and designer-
preference knowledge. This task is often quite difficult, however, precisely because
all of the knowledge is coded in FORTRAN and is therefore embedded throughout
the software system.

This lecture commences with the predecessor FORTRAN software system for
structural steel design noted in the foregoing and develops a corresponding knowl-
edge-based expert system. Specifically, the numeric-intensive algorithms for anal-
ysis and optimization are retained in FORTRAN, while the non-structured knowl-
edge that drives the design process is collected together as rules in a separate
knowledge base and implemented using the artificial intelligence (AI) program-
ming language OPS83, [5]. The lecture first addresses the basic issues of concern
in converting a FORTRAN program to a rule-based expert system program. Then,
the issues involved in developing the expert system itself are addressed at three
stages of the design process: (1) Preliminary stage to establish the basic data for
the design; (2) Solution stage to establish the numerical results of the design; (3)
Critique stage to evaluate the merits of the design. Finally, several example designs
of structural steel frameworks are presented to illustrate the features of the expert
system and how the knowledge-based technology effectively improves the synthesis
strategy and the design outcome.

2 Interfacing FORTRAN and AI Languages

The basic strategy in developing the expert system involves retaining all of the
algorithmic routines for the predecessor FORTRAN software system for structural
steel design (1], while replacing the FORTRAN control structures of the exist-
ing system with corresponding routines written in the AI programming language
OPS83, [5]. The retained FORTRAN routines have been well developed and ex-
tensively tested over many years and, in most cases, provide the most effective and
efficient means to solve their respective tasks (e.g., first-order and second-order
structural analysis, displacement and stress sensitivity analysis, continuous and
discrete optimization). The rule-based OPS83 routines, which quantify the non-
numeric aspects of design and drive the synthesis process by directly invoking the
numeric FORTRAN routines, are very easily modified and updated to accommo-
date different design scenarios.

OPS83 is the primary control language and, therefore, all FORTRAN-based
algorithms are treated as subroutines by OPS83. All information common to both
environments is passed through a subroutine argument list. Since the number of
entries in an OPS83 argument list is limited to twelve while, on the other hand, the
number of variables and parameters used by both environments is in the hundreds,

60

and since all global memory used by a FORTRAN routine is lost when control
is returned to the OPS83 environment, two OPS83 and two FORTRAN mapping
and recovery routines are utilized to manage the transfer of data between the
two programming environments, as follows: (1) prior to accessing a FORTRAN
algorithm from OPS83, an OPS83 mapping-routine is called to map all relevant
data into (at most twelve) large vectors; (2) the FORTRAN algorithm is then called
with these large vectors as its arguments; (3) once in the FORTRAN environment,
a FORTRAN recovery-routine is then called to recover the data from the large
vectors; (4) prior to exiting the FORTRAN environment, a FORTRAN mapping-
routine is called to map the data back into the large vectors of the argument list;
(5) upon returning to the OPS83 environment, an OPS83 recovery-routine is called
to recover the data from the large vectors.

The foregoing mapping/recovery strategy allows for the effective transfer of data
between the two programming environments and, during program development,
also allows new FORTRAN and/or OPS83 variables and parameters to be readily
introduced into the expert system program with little difficulty.

3 The Expert System

The architecture of the expert system is illustrated in Fig. 1, [6,7]. The designer
enters basic data into the Context through the User Interface. The system it-
self posts other data in the Context during the course of conducting the design.
The Knowledge Base contains rules based on expert knowledge that control the
design process, including rules that reflect good design practise and designer pref-
erences. The numeric FORTRAN routines and standard steel section databases are
resources of the Knowledge Base. The operation of the expert system is managed
by the Inference Engine, which employs the inference mechanism of the OPS83
language to fire rules in the Knowledge Base by matching their premises with data
in the Context. The Explanation Facility provides the user with information as to
why certain rules are fired during the design process.

While many rules are required to control the overall design process, only a
limited number of these rules are applicable at any one time. This fact is exploited
by dividing the Knowledge Base into three distinct sets of rules corresponding to
three stages of the design process: (1) Preliminary stage that establishes an initial
design, (2) Solution stage that establishes a corresponding least-weight design, and
(3) Critique stage that evaluates the current design and suggests redesign with
modifications. As shown in the following, the rules in each set are devised such
that they can be fired only when the corresponding design stage is active. The
described subdivision of the Knowledge Base, also indicated in Fig. 1, improves
the computational efficiency of the expert system since it reduces the number of
rules that need to be explicitly considered at any given stage of the solution process.

USER

USER
NTER
EXPLANATION
FACILITY

RELIMINAR
KNOWLEDG|
BASE

NUMERIC
ALGORITHMS

EXPERT
CRIMQUE

Figure 1. Architecture of the expert system.

61

62

An overview of the three stages of the synthesis process is given by Fig. 2.

3.1 Preliminary Stage

To begin the Preliminary stage of the design process, a number of basic parameters
are input as data through the User Interface into the Context for the expert system
(Fig. 1); specifically, the structure topology (bay widths, storey heights, connec-
tion and support types) and the design loading (dead, live, snow, wind, thermal,
settlement). The Preliminary stage then employs a number of related rules in the
Knowledge Base to establish an initial design for the structure.

Once the basic data for the design has been stored in the records of global
memory and the elements ‘stage = preliminary’ and ‘data input = done’ have been
posted in the Context, the activities of the Preliminary stage are established by
the ‘preliminary agenda rule’ (written here in pseudo-code):

rule: preliminary agenda

If stage = preliminary
data input = done

then design cycle =1
member behaviour = required
member profile = required
member group = required
initial design = required
analysis = required
member function = required
verify = required
preliminary termination = required

This rule is fired at the beginning of the Preliminary stage to define the tasks
required to be completed to identify an initial design for the structure. The first
action of the agenda rule is to set the ‘design cycle’ counter to unity (this counter
is used as an index to store data for the various designs created by the synthesis
process). Thereafter, the design tasks are performed sequentially in the order
shown through the firing of corresponding individual rules. The sequential ordering
of the rules is regulated by the OPS83 Inference Mechanism that directly fires a rule
in the Knowledge Base whenever data that matches the rule premise is encountered
in the Context (Fig. 1). Note from the rule descriptions in the following that the
firing of some rules is conditional upon the completion of preceding rules, which
further serves to explicitly regulate the sequential flow of action.

63

\/

Preliminary Identification
of the Design Task

;

Formulation and Solution
of the Design Problem

:

Evaluation and Critique /
of the Design Results o

Satisfactory

Design ? No

Figure 2. Overview of knowledge-based synthesis process.

64

The ‘member behaviour rule’ is:

rule: member behaviour

If stage = preliminary
member behaviour = required
then for¢ =1 to number of members
if member 7 end condition = pin-pin

member 1 span load = zero
then member ¢ behaviour = axial
else member ¢ behaviour = flexural
member behaviour = done

This rule examines the end conditions and span loading for each member to de-
termine if its behaviour is axial or flexural. An axial member has pins at both
ends and no load in span, while a flexural member has one or both ends fixed or is
loaded in span.

The ‘member profile rule’ is:

rule: member profile
If stage = preliminary
member behaviour = done
member profile = required
then for: = 1 to number of members
if member 7 behaviour = flexural
then min. length = max. span-to-depth x W-shape min. depth
if member ¢ length > min. length
then member ¢ profile = W-shape
else query user
else if member ¢ behaviour = axial
then query user
member profile = done

This rule establishes the cross-section profile for each member of the structure. If
the member is flexural and satisfies a specified minimum length requirement, the
section profile is taken to be a W-shape. Otherwise, the user is queried as to the
choice of section profile (e.g., T-shape, hollow-box, etc.). This rule is based on the
fact that the most common shape for flexural members of significant span is the
wide flange or W-shape. The minimum span length considered to be significant
is determined by multiplying the minimum available depth of W-shaped sections
(default = 6 in, 150 mm) by the maximum allowable span-to-depth ratio (default
= 20). This ratio is used by engineers as a quick rule-of-thumb check to ensure that
adequate stiffness is provided by specified sections. If the length of the member
exceeds the minimum significant length then the W-shape is suitable. Otherwise,

65

some other profile might be more economical. This rule is readily extended to allow
for the automatic assignment of a broader range of section profiles depending on
the experience of the designer. Not shown here is the fact that the user always has
the option to override any assignment made by the system and that the system
will not override any member profile that the user might pre-specify in the input
data.

The ‘member group rule’ is:

rule: member group

If stage = preliminary
member profile = done
member group = required

then for: = 1to number of members
if member 1 group = undefined
then call member group procedure
if member 1 group = undefined
then query user
for ¢ = 1 to number of groups

if group ¢ properties = undefined
then call group properties procedure
if group ¢ properties = undefined
then query user

member group = done

This rule invokes two separate OPS83 routines that link members together into
fabrication groups with common properties. If the input data has not assigned
a member to a group, the ‘member group procedure’ is called. This procedure
identifies members having the same behaviour type and section profile and then
links them together into groups according to conventional fabrication practise (e.g.,
all flexural W-shape girders at each storey level of a regular framework are grouped
together). If a member is irregular in that the system does not automatically assign
it to a group, the user is queried for assignment.

The second ‘group properties procedure’ identifies the section profile common to
all members of each group and then assigns to the group corresponding conventional
material property values for steel (yield stress, ultimate stress, etc.). If a group
is irregular in that the system does not automatically assign it material property
values, the user is queried for assignment.

66
The ‘initial design rule’ is:

rule: initial design
If stage = preliminary
member group = done
initial design = required
then call cross-section database routine
for ¢ = 1 to number of groups
if group g behaviour = axial
then group g initial design = group g profile
with max. area from section database
else if group g behaviour = flexural
then group g initial design = group ¢ profile
with max. I from section database
initial design = done

This rule first invokes a FORTRAN routine to create the random access database
of cross-section properties for each of the unique profile shapes identified for the
structure by the ‘member profile rule,’ (Herein, the calls to FORTRAN routines are
identified by slanted type so as to distinguish them from the OPS83 routines). The
created data also includes the indices of the sections with the largest and smallest
cross-section areas and moments of inertia for each shape category in the database,
which then enable an initial size to be established for the section profile assigned
to each group of members, as follows: if the member group behaviour is axial,
the group is assigned the section having the largest cross-section area from the
standard section database for the group profile; if the member group behaviour is
flexural, the group is assigned the section having the largest cross-section moment
of inertia from the section database for the group profile.

Once the initial sizes of the members have been established, the corresponding
structure is analyzed to obtain numerical results that the expert system subse-
quently uses to establish the function of each member (beam/column/etc.), and to
verify the initial design according to the provisions of the governing steel design
standard. The ‘preliminary analysis rule’ is:

rule: preliminary analysis

If stage = preliminary
analysis = required
initial design = done

then call properties routine
call analysis routine
analysis = done

This rule first invokes a FORTRAN routine that establishes the cross-section prop-

67

erties of each structural member in accordance with the design determined by the
‘initial design rule,” The resulting properties are stored in corresponding FOR-
TRAN vectors and eventually in OPS83 data records.

Once the member properties have been established, a FORTRAN routine is
called to conduct analysis of the initial design of the structure using a linear elastic
solver based on the Displacement Method of analysis. (For this first analysis only,
a node re-numbering routine is called to minimize the band-width of the structural
stiffness matrix so as to reduce computation and memory requirements, and the
numerical integrity of the stiffness matrix is checked to ensure that a reasonable
structure has been modelled).

First-order or second-order (P — A) analysis is conducted, depending on the
requirements of the design. Member stresses and nodal displacements are found
for each design load case and stored in disk files. Most of the analysis results
are not passed back to the OPS83 environment because much of this data need
not be manipulated by that side of the expert system. Instead, before passing to
the OPS83 side, the bulk of the data is reduced to a few scalars and vectors that
contain summarized data such as maximum displacements at a few key nodes, or
maximum force effects for each member from among all load cases. This is the type
of information that a designer gathers from a structural analysis for later design
purposes.

The ‘member function rule’ is:

rule: member function
If stage = preliminary or solution
analysis = done
member function = required
then for: = 1to number of members
if M; > min. moment
N; > min. axial force
then Member ¢ function = beam-column
else if M; > min. moment
N; < min. axial force
then Member ¢ function = beam
else if M; < min. moment
N; > min. axial force
then Member ¢ function = column
else member 7 function = unloaded
member function = done

This rule employs the results of the analysis of the initial design to establish the
functions of the members for the structure. Upon comparing minimum specified
or default moment and axial force values with the maximum moment M; and axial
force N; experienced by each member 7, from among all load cases, the member

68

function is classified as ‘beam-column,’ ‘beam’ or ‘column’ (or ‘unloaded’ if M; and
N; are both less than their corresponding minimum values).
The ‘preliminary verify rule’ is:

rule: preliminary verification

If stage = preliminary
member function = done
verify = required

then call verify routine
verify = done

This rule invokes a FORTRAN routine that uses the analysis results for the ini-
tial design, and the functions designated for the members, to verify the member
strength properties according to the provisions of the governing steel design stan-
dard. Stiffness properties are also verified by comparing nodal displacements for
the structure with allowable upper-bound values specified by the user. The veri-
fication establishes the response ratio for each stress and displacement condition
for the design (response ratio = ratio of actual response to maximum allowable
response.) If the response ratio for any condition is found to be greater than unity,
thereby signalling an infeasibility, the user is informed of this event prior to pro-
ceeding to the Solution stage (where design feasibility is generally restored after
one or two design cycles).

Upon establishing an initial design for the structure with known strength and
stiffness properties relative to the governing steel design standard, the Preliminary
stage of the design process is terminated through the ‘preliminary termination
rule’:

rule: preliminary termination
If stage = preliminary
preliminary verify = done
preliminary termination = required
then stage = solution
solution agenda = required
optimizer = continuous
preliminary termination = done

This rule causes the design process to proceed to the Solution stage of the ex-
pert system by modifying the Context element ‘stage = preliminary’ to ‘stage =
solution,” As well, the elements ‘optimizer = continuous’ and ‘solution agenda =
required’ are added to the Context. Not shown here is the fact that all extrane-
ous elements in the Context are removed at this point (e.g., ‘verify = done,’ etc.),
which serves to prevent the Context from becoming cluttered with data that is no
longer relevant to the synthesis process.

69

3.2 Solution Stage

Upon completion of the Preliminary stage, the Solution stage of the design process
commences to determine a least-weight design of the structure. This stage involves
the coordinated use of elastic structural analysis, first-order sensitivity analysis
and a continuous/discrete optimization technique. For the initial ‘trial’ design
of the structure from the Preliminary stage, structural and sensitivity analyses
are conducted and the strength and displacement design conditions are formulated
explicitly in terms of member sizing variables through the use of first-order Taylor’s
series. The structure weight function is formulated in terms of the sizing variables,
and the optimization technique is applied to solve the optimization problem so
as to achieve a lower weight design of the structure. The details of the synthesis
process have been presented by the writer in a previous lecture of the NATO-ASI.

The initial design from the Preliminary stage is generally feasible but usually
poorly proportioned. As a consequence, the Solution stage is devised to have two
modes of operation. The first mode involves solving a continuous-variable weight
optimization problem for a few design cycles until a reasonably proportioned struc-
ture is achieved. The second mode involves taking standard section sizes as dis-
crete variables to the weight optimization. The continuous-variable optimization
provides a computationally efficient means to achieve reasonable proportions for
the structure before commencing discrete-variable optimization because there is no
interaction with the cross-section database, the bounds of the strength constraints
are taken to remain constant and only first-order analysis is employed. The latter
two points recognize that the continuous-variable mode only produces an approxi-
mate design and thus the rigour of accounting for changing constraint bounds and
conducting second-order analysis is not warranted. Based on the results of the
continuous-variable mode, discrete sections are selected from the standard section
database to initiate the discrete-variable mode of the Solution stage.

The activities of the Solution stage of the synthesis process are defined by the
‘solution agenda rule’:

70

rule: solution agenda
If stage = solution
solution agenda = required
then design cycle = design cycle +1
analysis = required
member reselection = required
analysis = required
member function = required
verify = required
constraint deletion = required
sensitivity analysis = required
section subset = required
optimization = required
convergence check = required

This rule is fired at the beginning of each design cycle of the Solution stage to
define the tasks required to be completed to achieve a lower-weight design. During
the design cycle, the tasks are performed sequentially in the order shown through
the firing of corresponding individual rules. Note from the description of these
rules in the following that their sequential order is regulated by making the firing
of each rule conditional upon the completion of the preceding rule.

The first action taken by the agenda rule is to advance the ‘design cycle’ counter
by 1. Note that the second and fourth actions of the rule post the same ‘analysis
= required’ element to the Context, and that these elements do not overwrite each
other but exist as separate entities in the Context. The first structural analysis is
performed prior to member reselection and ensures that cross-sections are selected
based on the response of the current design. (The current design can result from
actions in either the Preliminary or Critique stage, or may be the optimized de-
sign produced by the previous design cycle of the Solution stage). The result of
the member selection procedure is somewhat approximate and, as such, a second
analysis and subsequent verification of the structure are required to ascertain the

71
appropriateness of the selected member sections. The two analysis rules are:

rule: analysis before reselection
If stage = solution
member reselection = required
analysis = required
then call analysis routine
analysis = done

rule: analysis after reselection

If stage = solution
member reselection = done
analysis = required

then call analysis routine
analysis = done

Note that the only difference between the two rules is the status of the ‘member
reselection’ element. Both rules invoke a FORTRAN routine that conducts stress
and displacement analysis of the current structure for each design load case (the
same analysis routine as that called during the Preliminary stage). The analysis
conducted is either first-order or second-order, depending on the requirements of
the design, and is determined by the ‘analysis type rule’:

rule: analysis type
If analysis = required
then if optimizer = continuous
then analysis type = first order
else analysis type = specified analysis type
if specified analysis type = undefined
then specified analysis type = default analysis type

This rule is invoked each time the element ‘analysis = required’ is posted in the
Context. (Note that this rule can be fired during any of the three design stages
since it has no ‘stage =’ pre-condition). Currently, the rule ensures that if the user
has not specified an analysis type then a default analysis type is adopted. The
default analysis type is automatically determined from input data in the Context
concerning the requirements of the specified design standard and whether sidesway
is ‘permitted’ or ‘prevented.’ In addition, the analysis is automatically taken to be
first-order if the Solution stage is in the continuous-variable mode. More sophis-
ticated features can be added to this rule (e.g., even though the default analysis
type is second-order, a comparison of first-order and second-order results for the
current structure may show that P — A analysis is not warranted).

The member selection process commences by firing one of the following two res-

72

election rules, depending on whether the Solution stage is in continuous or discrete-
variable mode. The first ‘member reselection rule’ is:

rule: member reselection-continuous
If stage = solution

optimizer = continuous

analysis = required

member reselection = required
then member reselection = done

analysis = done

This rule is fired for the continuous-variable mode simply to set the status of the
Context element ‘member reselection’ from ‘required’ to ‘done’ (i.e., since member
reselection is only required for the discrete-variable mode). Similarly, since no
reselection is performed, a second structural analysis is not required and the status
of the ‘analysis’ element is also changed to ‘done’ in the Context. The second
‘member reselection rule’ is:

rule: member reselection-discrete
If stage = solution
optimizer = discrete
member reselection = required
then for g = 1 to number of groups
if group g behaviour = axial
then group g stiffness property = area
else if group g behaviour = flexural
then group g stiffness property = I
call selection routine
member reselection = done

This rule first determines the cross-section stiffness property to be considered
by the member reselection routine so as to appropriately account for the stiff-
ness (displacement) conditions for the structure when making member strength
selections. Namely, the stiffness property is set to area for axial members and to
moment of inertia I for flexural members. (Note that the same stiffness property
applies to all members of each group). A FORTRAN member reselection routine is
then called to search the entire database of standard sections for a smaller section
for each member group g satisfying sizing, strength and stiffness constraints for all
members belonging to the group. To this end, the strength constraints are evalu-
ated member-by-member based on the cross-section properties in the database and
the requirements of the governing design standard. There are, however, no design
standard formulae that permit the overall structural stiffness to be directly evalu-
ated based on cross-section properties. For this reason, an approximate technique
that utilizes displacement sensitivities is employed to estimate the overall effect

73

of member cross-section properties (area and moment of inertia) on the stiffness
of the structure. This technique enables minimum section size constraints to be
imposed during the member-by-member selection process so as to ensure adequate
overall structural stiffness.

Prior to verification of the current design, the ‘member function rule’ previously
described for the Preliminary stage is re-fired for the Solution stage to ensure that
the designated function of a member is consistent with the current distribution of
forces in the structure. The ‘solution verify rule’ is then fired:

rule: solution verify

If stage = solution
member function = done
verify = required

then call verify routine
call design history update
verify = done

This rule invokes a FORTRAN routine that uses the current analysis results to
verify the member strength and structure stiffness properties according to the
provisions of the governing steel design standard. (This is the same verify routine as
that called during the Preliminary stage.) The verification establishes the response
ratio for each stress and displacement condition for the design.

With a view to numerical efficiency, the stress and displacement conditions that
have small response ratios are deleted from the active constraint set for the next

74
weight optimization through the ‘constraint deletion rule’:

rule: constraint deletion

If stage = solution
verify = done
constraint deletion = required

then deletion response = min. deletion response + (design cycle)/10
if deletion response > max. deletion response
then deletion response = max. deletion response
call deletion routine
if no. of active constraints < min. no. of active constraints
then no. of active constraints = min. no. of active constraints
constraint deletion = done

This rule invokes a FORTRAN routine that deletes displacement and stress con-
ditions having response ratios less than a specified minimum value from the ac-
tive constraint set. Prior to calling the deletion routine, the rule establishes the
minimum response ratio value for the current design cycle based on the absolute
minimum (default = 0.3) and maximum (default = 0.8) deletion response ratios
provided as input data in the Context. (Note that the specified minimum response
ratio progressively increases from a low value for the initial design cycle when the
member sizes change significantly, to a high value for the final design cycle when
convergence to the least-weight structure occurs). After the deletion routine has
executed, the rule then ensures that a sufficient number of constraints yet remain
to conduct the next weight optimization. (Note that deleted constraints are veri-
fied during subsequent design cycles and added to the active constraint set if their
response ratios become greater than the current specified minimum value).

As described by the writer in a previous lecture of the NATO-ASI, the first-order
Taylor’s series approximations of the retained stress and displacement constraints
are formulated using sensitivity analysis techniques. Within the expert system,
this activity is carried out through the ‘sensitivity analysis rule’:

rule: sensitivity analysis

If stage = solution
constraint deletion = done
sensitivity analysis = required

then call sensitivity routine
sensitivity analysis = done

This rule invokes a FORTRAN routine that first conducts sensitivity analysis of
the current structure to determine stress and displacement gradients, and then for-

75

mulates first-order Taylor’s series approximations of the corresponding constraint
equations.

The upper and lower bounds on member cross-section sizes are supplied as
data from the Preliminary stage and remain constant during the first mode of the
Solution stage that involves solving the continuous-variable weight optimization
problem. For the second mode that involves solving the discrete-variable weight
optimization problem, subsets of candidate sections for the members are selected
for each design cycle from the standard section database through the ‘section subset
rule’:

rule: section subset

If stage = solution
sensitivity analysis = done
section subset = required

then call subset routine
section subset = done

This rule invokes a FORTRAN routine that selects a limited number of sections
(default = 12) that are closest to the current section in the database and have
adequate strength and stiffness properties. (Note that this may or may not result
in the selection of sections having smaller weight than the current section).

The coefficients in the weight function for the structure are supplied as data
from the Preliminary stage and remain constant for both modes of the Solution
stage. The weight optimization for each design cycle is conducted through the
‘optimization rule’:

rule: optimization

If stage = solution
section subset = done
optimization = required

then call optimization routine
optimization = done

This rule invokes a FORTRAN routine [8] that solves the continuous-variable
weight optimization problem for each design cycle of the first mode of the So-
lution stage, or the discrete-variable weight optimization problem for each cycle of
the second mode, to achieve a lower-weight design of the structure.

The number of design cycles for the continuous-variable mode of the Solution
stage is a fixed number that is supplied as input data in the Context. The tran-
sition to the discrete-variable mode is carried out by the ‘continuous to discrete

76
optimization rule’:

rule: continuous to discrete optimization
If stage = solution

optimizer = continuous

design cycle = continuous_variable cycles + 1
then call continuous to discrete routine

optimizer = discrete

This rule is fired when the design cycle counter exceeds the allowable number of
continuous-variable design cycles (default = 3). The first action of the rule is to
change the Context element ‘optimizer = continuous’ to ‘optimizer = discrete.’
Then, a FORTRAN routine is called to convert the continuous-variable section
sizes for the members to discrete sections from the database. (This simply involves
taking the discrete section that has a size that is closest to, but larger than, the
size of the corresponding continuous-variable section).

The number of design cycles for the second discrete-variable mode of the So-
lution stage depends on when the synthesis process converges to the least-weight
structure, and is controlled through the ‘convergence check rule’:

rule: convergence check
If stage = solution
optimization = done
convergence check = required
then call convergence routine
if convergence = false
then solution agenda = required
else if convergence = true
then stage = critique
critique agenda = required

This rule invokes an OPS83 procedure that determines whether or not the solution
process has converged to a least-weight design of the structure. If not, the ‘solution
agenda rule’ is then fired again to commence another design cycle of the Solution
stage. If convergence has occurred, the Solution stage of the design process is
terminated and the Critique stage is activated.

3.3 Critique Stage

Upon completion of the Solution stage, the Critique stage of the design process
commences to determine if the current least-weight design of the structure can or
should be improved upon. The activities of the Critique stage are established by

77
the ‘critique agenda rule’:

rule: critique agenda

If stage = critique
critique agenda = required

then critique termination = required
improved fabrication = required
improved section profile = required
improved section depth = required
improved unbraced length = required
improved supports = required
improved stiffness = required

This rule is fired at the beginning of the Critique stage to identify the areas to
be examined for possible design improvement. The tasks are performed sequen-
tially through the firing of corresponding individual rules, but in the reverse order
shown. (A currently devised, the various improvement rules of the Critique stage
are not conditional upon each other and, as such, the significance of their firing
order is somewhat arbitrary). The reversed firing order of the rules is regulated
by the ‘younger-before-older’ conflict-resolution strategy employed by the OPS83
Inference Mechanism. Namely, even though the pre-condition of a critique rule
is satisfied as each agenda task is posted to the Context, no other rule can fire
until the agenda rule has finished executing. As such, the last rule satisfied by the
postings of the agenda tasks will be the ‘youngest’ rule and, hence, will be fired
first by the Inference Mechanism. The ‘critique termination rule’ will be fired last
since it is the first item of the agenda rule and, therefore, the ‘oldest’ element in
the Context.

Recognizing that the improvements suggested by some rules may negate or
conflict with the findings of other rules, no changes to the design are allowed until
all the critique rules have fired. Then, the user is presented with a list of possible
improvements which may be implemented in any order, or ignored. (For the current
expert system, it is left to the discretion of the user to decide when an improvement
negates or conflicts with any other suggested improvements). The user may invoke
one or more of the suggested improvements, at which point the expert system
will re-initiate the Solution stage (discrete mode) with the ‘improved’ design as
the starting basis. Eventually, the ‘critique agenda rule’ will be fired again to re-
evaluate the design with respect to the improvements considered thus far, and so
on until no further improvements are made and the expert system is terminated.

78
The ‘improved fabrication rule’ is:

rule: improved fabrication
If stage = critique
improved fabrication = required
then call merge groups routine
call split groups routine
improved fabrication = done

This rule invokes two separate FORTRAN routines that evaluate specific fabrica-
tion details of the current design for the structure. The first routine compares the
design sections for the different member groups for the structure and identifies sets
of two or more groups that have nearly identical sections. For each set of member
groups so identified, the user is later queried as to whether to merge the groups to-
gether into a single group so as to reduce the number of different sections required
for the design. The second routine evaluates the maximum response ratio for the
individual members within each member group and identifies situations where only
a few members have high response ratios and, therefore, control the group design
at the expense of those members with low response ratios. For each member group
for which such a situation is identified, the user is later queried as to whether to
divide the group into two or more smaller groups so as to more effectively utilize
member capacities and thereby result in a lower weight design. (Evidently, other
routines are readily added to this rule as additional fabrication details become of
concern.)
The ‘improved section profile rule’ is:

rule: improved section profile
If stage = critique
improved section profile = required
then call improved profile routine
improved section profile = done

This rule invokes an OPS83 procedure that determines if the design section for
each member group is the biggest or smallest section available from the section
profile database specified for the group. If the design section is found to be at a
limiting size, the user is later queried as to whether to select a different section
profile for the member group with less restrictive size limitations so as to result in
a more effective distribution of the relative member sizes for the structure.

79

The ‘improved section depth rule’ is:

rule: improved section depth
If stage = critique
improved section depth = required
then call improved depth routine
call relative depth routine
improved section depth = done

This rule invokes two separate OPS83 procedures that evaluate the appropriateness
of the member section depths for the current design of the structure. The first
routine identifies any section depths that appear to be too large or too small
for good design practise. In the former case, column depths are compared to a
maximum allowable depth (default = 14 inches, 360 mm), and in the latter case,
the span-to-depth ratio of each beam is compared to an allowable upper-bound
value (default = 20). For each section depth so identified as being too large or
too small, the user is later queried as to whether to impose a depth limitation for
the section so as to satisfy conventional design practise, clearance requirements,
aesthetics, etc. (The routine does not evaluate section depths if the user has pre-
specified allowable depth limits). The second routine considers the member joints
for the structure and identifies situations where there are significant differences in
the relative section depths of connecting members (default = 4 inches, 100 mm).
For each situation so identified, the user is later queried as to whether to impose a
section depth limitation for one or more of the connecting members so as to ensure
a more compatible joint connection.
The ‘improved unbraced length rule’ is:

rule: improved unbraced length
If stage = critique
improved unbraced length = required
then call lateral bracing routine
call compression-flange bracing routine
improved unbraced length = done

This rule invokes two separate OPS83 procedures that evaluate the unbraced
lengths of certain members for the structure. The first routine identifies axial
members for which the strength design is controlled by out-of-plane buckling. For
each such member so identified, the user is later queried as to whether additional
bracing is available (e.g., from a wall) such that a smaller out-of-plane unbraced

80

length may be specified for the member. The second routine identifies loaded flex-
ural members with wide-flange section for which the unbraced compression flange
length is larger than a specified value (default = one-half the span length of the
member). For each such member so identified, the user is later queried as to
whether additional bracing is available for the compression flange (e.g., from a
floor) such that a smaller unbraced compression-flange length may be specified for
the member. (The reduced unbraced lengths suggested by both routines will allow
for smaller section sizes for the same member load-carrying capacities).
The ‘improved supports rule’ is:

rule: improved supports
If stage = critique
improved supports = required
then call improved supports routine
improved supports = done

This rule invokes an OPS83 procedure that examines the supports for the structure
to determine if uplift forces are present (an undesirable event). For each support
for which such forces are identified, the user is later advised of the situation and en-
couraged to review the lateral load resisting system so as to eliminate any uplifting
action.

The ‘improved stiffness rule’ is:

rule: improved stiffness

If stage = critique
improved stiffness = required

then call improved lateral stiffness routine
call improved beam stiffness routine
improved stiffness = done

This rule invokes two OPS83 procedures that identify parts of the structure where
increased stiffness is potentially required. The first routine checks the maximum
lateral drift experienced at the top storey of the structure and, depending upon
the load factors associated with the applied loads, estimates the lateral drift at the

81

service load level. If the deflection so identified exceeds the allowable displacement
limit (default = h/500, where h is the height of the structure at which the displace-
ment is measured) the user is later queried as to whether to impose a limitation
on the displacement such as to ensure a more appropriate stiffness response for the
structure. (The procedure is not implemented if the user has already pre-specified
a lateral displacement constraint for the top storey). The second routine checks
for the presence of a constraint on the vertical deflection of at least one member of
each beam group where span loads are present. If no such constraint is detected,
the user is later advised that vertical deflection has not been constrained for the
affected member group.

For the current expert system, the foregoing describes the rules that are fired
during the Critique stage to arrive at suggestions to improve the design of the
structure. (Evidently, other design improvement rules are readily implemented as
different design scenarios and experiences are encountered). The Critique stage is
terminated through the ‘critique termination rule’:

rule: critique termination
If stage = critique
critique termination = required
then call improvement implementation procedure
critique termination = done
query user for action
if action = solution
then stage = solution
solution agenda = required
else if action = output
then query user for final design
call output routine
QUIT

This rule first calls an OPS83 procedure that directly queries the user to selectively
implement any or all of the improvements suggested by the Critique stage. Next,
the user is queried as to whether to return to the Solution stage to account for any
suggested design improvements (and to eventually arrive again at this ‘critique
termination rule’), or to directly select a final design from the synthesis history
(the expert system will recommend the most recent least-weight design produced
by the Solution stage) and then call a FORTRAN routine to output the results.

82

4 Design Examples

This section of the lecture presents a number of example applications that demon-
strate the features and capabilities of the knowledge-based expert system for struc-
tural steel design. All results are achieved for the expert system implemented on
a UNIX-based VAX11-780 (University of Waterloo) computer. The first example
concerns the design of a ten-storey office tower and provides an overview of the ex-
pert system from the Preliminary stage through the Solution stage to the Critique
stage. The second example concerns the design of a K-braced preheater tower for
a cement plant and traces the evolution of the design of a single member through
the Preliminary and Solution stages of the synthesis process. The third example
concerns the design of a mill building with a trussed roof and demonstrates how a
new rule can be introduced into the expert system when a design scenario occurs
that is beyond the scope of the existing Knowledge Base.

4.1 Ten-Storey Office Tower

The planar one-bay, ten-storey frame in Fig. 3 is part of an office building tower.
The frame is to be designed for the single load case shown in Fig. 3, where the in-
dicated load values define the service-load level, [7,9]. The design is to be governed
by the provisions of the American Institute of Steel Construction (AISC) Working
Stress Design standard for steel structures [3]. Member sections are to be selected
from the AISC database of standard steel sections. Initially, no limitations are
placed on member section depths or on nodal displacements.

The basic data defining the structure topology and loading shown in Fig. 3 is
input through the User Interface into the Context for the expert system (Fig. 1).
The rules in the Knowledge Base pertaining to the Preliminary stage of the design
process (Section 3.1) are then implemented to establish an initial design for the
structure, as indicated in Table 1. Note from Table 1 that the column members
are collected together into fabrication groups over every two stories of the frame,
while all nine floor beams are collected together into a single group. The ‘initial
design rule’ assigns a W36 Xx 300 section to all members for the frame, which
corresponds to a total structure weight of 120,000 Ibs. This design, which is feasible
but excessively heavy, is indicated in Fig. 4 as the Preliminary Design.

Having the initial design of the frame from the Preliminary stage, the rules
in the Knowledge Base pertaining to the Solution stage (Section 3.2) are then
implemented to determine a corresponding least-weight design over a number of
design cycles. (Recall that member sizes are taken as continuous variables to the
weight optimization for the first three design cycles, and as discrete variables for
all design cycles thereafter until weight convergence occurs). Table 2 indicates,
for example, the rule outcome at the beginning (member reselection) and end

25k 12k

ITOIYIYTIIIY £
. 610 7
c19 €20
24 kMt (typ)
S0k 30808005880800888081
be
c17 c18
50k 1988808080830 88803 81
c15 c16
50k
18800888000088800881
c13 ci4
50k
198088038850 83850080
c11 c12
50k TOTITIITTITITIIT 10@10ft
-]
c9 c10
50k
TIITO T
b4
c7 c8
50k
1890503008008808885¢
c5 c6
50k TITTIIYITIITY
c3 c4
50k 24k (yp)
SLI LI LIITTITITITTT]
ct c2
mr mr -+

A—

Figure 3. One-bay, ten-storey frame.

84

4 Preliminary
Design

Critique
Solution Design
Design =

RELATIVE STRUCTURE WEIGHT
n
|
!

T T T T T 171
012345578910

DESIGN CYCLE

Figure 4. Design history for ten-storey frame.

85

Table 1. Preliminary stage results for ten-storey frame.

r Rule | Outcome]

Member Behaviour | Flexural (all members)
Member Profile W-shape (all members)
Group 1 (members c1-c4)
Group 2 (members c5—c8)
Group 3 (members c¢9-c12)

(

(

(

Group 4 (members c13-c16)

Member Group Group 5 (members c17-c20)

Group 6 (members b1-b9)

Group 7 (member b10)

Young’s Modulus = 29,000 ksi (all groups)
Shear Modulus = 11,200 ksi (all groups)
Yield Stress = 36 ksi (all groups)
Ultimate Stress = 58 ksi (all groups)
Initial Design W36 x 300 (all groups)

Member Function | Beam-column (all members)

Note: Wd x m = wide-flange section; depth d (in) and mass m (Ib/ft).

(optimization) of the fourth design cycle (the first design cycle for which discrete-
variable optimization is conducted).

Table 2. Solution stage results for design cycle 4 for ten-storey

frame.
Member Rule outcome
Group | Member Reselection | Optimization
cl-c4 W30x108 W27x102
c5-c8 W21x73 W24 x68
c9-c12 W18x60 W21x57
cl3-cl6 W16x45 W18x40
c17-c20 Wi16x31 W14x30
b1-b9 W24 x68 W24 x68
b10 W14 x30 W12x30

The design outcome in Table 2 for the ‘member reselection rule’ corresponds
to a total structure weight of 25,520 lbs., while that for the ‘optimization rule’
corresponds to a weight of 24,720 lbs. The Solution stage terminates after three

86

discrete-variable design cycles (for a total of six cycles) with the least-weight design
of the frame given in Table 3.

Table 3. Solution stage results for ten-storey frame.

Solution design

Member | X-Section Length | Weight

Group | Designation | (ft) (Ibs)
cl-c4 W30x108 40. 4321.
c5-c8 W21x73 40. 2391.
c9-c12 W21x57 40. 2277.
cl13-c16 W16x45 40. 1813.
c17-c20 W16x31 40. 1243.
b1-b9 W24x62 180. | 11160.
b10 W14x30 20. 603.
Total : | 24350.

The combined bending and axial compression stress condition for the roof beam
(Eq. 1.6-2 in Ref. [3]) is the controlling condition for the design in Table 3, which
is indicated in Fig. 4 as the Solution Design.

Having the least-weight design in Table 3 from the Solution stage, the rules

in the Knowledge Base pertaining to the Critique stage (Section 3.3) are then
implemented to determine if the current design of the frame can or should be
improved upon, as indicated in Table 4.
In Table 4, the ‘improved fabrication rule’ suggests that the single group of nine
members bl-b9 be subdivided into three independent member groups b1-b3, b4—
b6 and b7-b9; this suggestion is prompted by the fact that, for the Solution Design,
the stress conditions for the nine beam members bl to b9 have maximum response
ratios of 0.90, 0.96, 0.88, 0.80, 0.69, 0.60, 0.47, 0.37 and 0.27, respectively. The
‘improved section depth rule’ suggests that, consistent with good design practise,
upper-bound limitations be placed on column section depths; this suggestion is
prompted by the fact that, for the Solution Design in Table 3, column members
cl-c4, c5—12 and c13-c20 have large section depths of 30, 21 and 16 inches, respec-
tively. The ‘improved stiffness rule’ suggests that the lateral drift at the roof level
of the frame be limited to h/500 = 2.4 inches; this suggestion is prompted by the
fact that the roof-level lateral drift of h/490 = 2.43 inches for the Solution Design
is not acceptable in practise. (In fact, the /500 limitation on lateral displacement
becomes even more necessary to the design if the column section depths are limited
as suggested.)

Upon adopting the suggested design improvements from the Critique stage, the
design process returns to the Solution stage to account for the corresponding new

87

Table 4. Critique stage results for ten-storey frame.

Rule Outcome
Improved Problem: member b2 dominates the design
Fabrication of member group b1-b9

Suggest: member group b1-b3
member group b4-b6
member group b7-b9

Improved No improvement suggested

Section Profile

Improved Problem: section depths are too large
Section Depth for column members c1-c20

Suggest: depth < 14 in. for members c1-c4
depth < 12 in. for members c5-c12
depth < 10 in. for members ¢13-c20

Improved No improvement suggested
Unbraced Length

Improved No improvement suggested
Supports

Improved Problem: lateral displacement at
Stiffness roof level = h/490

Suggest: displacement < h/500

data. The Solution stage (discrete mode) then commences again and converges
after four more design cycles (for a total of ten cycles) to the least-weight design
given in Table 5. The h/500 limitation on roof-level lateral drift is the controlling
condition for this design, which is indicated in Fig. 4 as the Critique Design. Note
from Tables 3 and 5 that the design improvements have resulted in a 18.6% increase
in total structure weight from 24,350 lbs. to 28,870 lbs. The designer must decide
whether this weight increase is justified for the design improvements achieved.
Herein, the design given in Table 5 is deemed acceptable and the expert system is
terminated.

4.2 K-Braced Preheater Tower

The planar K-braced framework in Fig. 5 is part of a preheater tower for a cement
plant [7,10] and is to be designed in accordance with the provisions of the AISC
Load and Resistance Factor Design (LRFD) standard for steel structures [4].

No displacement constraints are imposed for the design by the user, although
the Critique stage of the expert system may later suggest such constraints so as to
improve the stiffness characteristics of the frame (not considered herein). The struc-

88

321t

301t 3oft

381t

3111

\
"

DD

L4
Fo]

_ member b6

-
L

441t

Figure 5. K-braced frame.

89

Table 5. Critique stage results for ten-storey frame.

Critique design

Member | X-Section Length | Weight

Group | Designation | (ft) (Ibs)
cl-c4 W14x109 40. 4362.
c5—c8 W12x106 40. 4253.
c9—12 W12x96 40. 3844.
c13—-c16 W10x60 40. 2399.
c17-c20 W10x30 40. 1205.
b1-b3 W27x84 60. 5071.
b4-b6 W24 x62 60. 3722.
b7-b9 W24 x55 60. 3313.
b10 W18x35 20. 7020.
Total : | 28870.

ture topology and five design load cases are initially input as basic data through
the User Interface into the Context for the expert system (Fig. 1). The five load
cases (not shown for the sake of brevity) represent various combinations of dead,
live, wind and equivalent seismic loads applied to the joints and members of the
framework: case 1 = dead + live; case 2 = 0.85 (dead + wind); case 3 = dead +
0.25 live + seismic; case 4 = 0.75 (dead + live + wind); case 5 = 0.75 (dead + live
+ seismic).

A number of default design parameters are automatically posted in the Context
concerning material properties, deflection limitations, section depths, slenderness
ratios, etc. For example, allowable slenderness ratios (KL/r) are specified to be
200 and 300 for members in compression and tension, respectively, in accordance
with the LRFD design standard, [4]. In addition, for this design example, a num-
ber of parameters are pre-specified by the user concerning member profiles, section
depths, member fabrication groups, and material properties. All member profiles
are specified to be American W-shapes. To comply with conventional design prac-
tise, the depths of the column sections are limited to 14 inch (360 mm) and the
depths of the K-bracing sections are limited to 12 inch (300 mm). No limitation
is placed on the depths of beam sections. The specified fabrication groups include
two column groups (the columns of the bottom two stories belong to one group and
the columns of the top three stories belong to the other group), five beam groups
(a separate group for each storey), and five K-bracing groups (a separate group
for each storey). The default material properties normally assigned to American
W-shapes (i.e. f, = 36 ksi) are changed by the user to be those for f, = 50 ksi
steel.

With the view to illustrate both the operation of the expert system and the

90

processing of the provisions of the LRFD steel standard, the remaining discussion
for this example concerns the evolution of member 6 from the beginning of the
Preliminary stage to the end of the Solution stage for the synthesis process. From
Fig. 5, member 6 belongs to the first-storey beam fabrication group, named herein
as group BEAM1.

Once the basic data has been input, the first action of the Preliminary stage
for the expert system is to apply the ‘member behaviour rule’ to determine the
behaviour of member 6. Since the member is pinned at the column but continuous
over the point where the K-bracing members meet (Fig. 5), and since it is subject
to span loading (not shown), the member behaviour is determined to be flexural.
The ‘member profile rule’ and ‘member group rule’ are effectively bypassed since
the user has already specified corresponding default parameters. The ‘initial design
rule’ assigns member 6 to have a W14 X 730 section. (This is the section in the
American W-shape database that has the largest moment of inertia; although such
a shallow heavy section is a poor choice for a beam member it is nonetheless almost
always feasible, which is a necessary condition to commence the weight optimization
task of the synthesis process.) The ‘analysis type rule’ assigns second-order (P—A)
analysis as the basis for design (i.e., the default analysis type for the LRFD design
standard). After analysis of the initial design has been conducted for all five load
cases, the ‘member function rule’ determines that member 6 is a beam-column
since it is subject to combined bending moment and axial force. To complete the
Preliminary stage, the ‘design verification rule’ is fired to verify the properties of
member 6 in accordance with the strength/stability provisions of the LRFD steel
design standard, [4].

Table 6 lists the details of the verification of the initial design of member 6
for load case 1, for which the member is in combined bending + tension. From
the American W-shape database for the expert system, the W14 x 730 section for
member 6 is determined to be compact. Since member 6 is a beam-column, the
clauses of the LRFD design standard relating to slenderness (B7), axial capacity
(D1), shear capacity (F2.2), bending capacity (F1) and combined axial + bending
capacity (Eq. H1-1b) are checked by calculating the corresponding ‘response ratios’
= ‘prevailing value/allowable value.” For example, the slenderness ratio for member
6 having a W14 x 730 section is K L/r = 55.65 and the allowable slenderness ratio
= 300 for a member in tension and, therefore, the response ratio = 55.65/300 =
0.186, as indicated in Table 6. The very small response ratios in Table 6 indicate
that the initial design section for member 6 is significantly under-utilized. (In
general, a fully utilized section exhibits a response ratio = 1.0 for one or more of
its governing design code clauses).

The Solution stage of the expert system then commences to conduct the itera-
tive synthesis process to achieve a least-weight design of the frame. For example,
after three continuous-variable optimization design cycles the ‘continuous to dis-
crete optimization rule’ assigns member 6 to have a W18 x 50 section. Based on

91

Table 6. LRFD Verification results for initial design of member 6
of K-braced frame.

Member: 6, Group: BEAM1, W14X730, Compact , Bending + Tension
Pu = 69.4 kips Pr = 9680. Ae = 215. in2

Vu = 77.8 kips Vr = 1860. Aw = 68.8 in2

Mu = 271. kip-ft Mr = 6230. Cb = 1.75 Lf = 21.8 ft
Clause B7 : (KL/r) /300 = 0.186

Clause D1 : Pu/Pr = 0.007

Clause F2.2 : Vu/Vr = 0.042

Clause F1i : Mu/Mr = 0.043

Clause eq.H1-1b : Pu/2Pr + Mu/Mr = 0.047

(subscripts ‘u’ and ‘r' refer to factored effects and calculated
resistance, respectively; P = axial force; V = shear force;

M = bending moment; Ae = effective area; Aw = area of the web;
Cb = bending coefficient; Lf = unbraced length of the flange)

the analysis results for the current design of the frame, this is the least weight sec-
tion in the American W-shape database that satisfies the LRFD strength/stability
requirements for the member. The weight optimization for the fourth design cycle
assigns member 6 to have a W18 X 46 section (i.e., the unit weight of the member
decreased from 50 to 46 lb/ft.). Succeeding design cycles of the Solution stage
produce still lighter-weight designs until weight convergence occurs, at which point
member 6 is assigned to have a W16 x 36 section.

Table 7 lists the details of the verification of the final design of member 6 for
load case 1 (the critical load case for the member from among the five load cases for
the frame). Upon comparing the response ratios in Tables 6 and 7 it is seen that,
contrary to that for its initial design section, the final design section for member
6 is almost fully utilized. The governing LRFD code clause in Table 7 concerns
combined axial + bending behaviour, for which member 6 is 98.2% utilized.

The Critique stage of the expert system is not illustrated for this example.

92

Table 7. LRFD Verification results for final design of member 6 of
K-braced frame.

Member: 6, Group: BEAM1, W16X36, Compact , Bending + Tension
Pu = 68.9 kips Pr = 477. Ae = 10.6 in2

Vu = 75.4 kips Vr = 127. Aw = 4.69 in2

Mu = 218. kip-ft Mr = 240. Cb = 1.756 Lb = 21.8 ft
Clause B7 : (KL/r)/300 = 0.572

Clause D1 : Pu/Pr = 0.144

Clause F2.2 : Vu/Vr = 0.595

Clause F1 : Mu/Mr = 0.910

Clause eq.H1-1b : Pu/2Pr + Mu/Mr = 0.982

4.3 Mill Building Framework

The purpose of the following design example [7] is not to track the workings of
the synthesis process in detail but, rather, to demonstrate that the expert system
environment provides an excellent means to accommodate previously unforeseen
design scenarios through the addition of new rules in the Knowledge Base. Specif-
ically, the introduction of new rules is discussed for both the Solution and Critique
stages of the design process.

The planar mill building framework in Fig. 6 is to be designed in accordance
with user-specified displacement constraints and the strength/stability provisions of
the Canadian Limit States Design (LSD) standard for steel structures [2]. Member
sections are to be selected from the Canadian Institute of Steel Construction (CISC)
database of standard sections.

The mill frame is subject to the three design load cases indicated in Fig. 6. The
first load case consists of factored dead and live gravity loads, the second load case
consists of service (unfactored) live gravity loads, and the third load case consists
of combined dead, live, and wind loads at the service level. Vertical displacement
at the midspan of the roof truss is limited to 80 mm (L/300) for load case 2.
Horizontal displacement at the roof top is to be limited to 60 mm (h/370) for load
case 3.

The user has specified that all members of the roof truss are to be square hollow
structural (SHS) sections and that the column members are to be welded wide
flange (WWF) sections. Six member fabrication groups have also been specified,

93

12 @ 2m

30

1

D2

q2

0.70(1.5w2)

Member Group

() Nocero.

q1

0.70(1.5w1)

125D + 1.5L

125D + 0.70{1.5L)

LOAD CASE

Where: D = 15.0kN, L =375kN, wi = 6.3 kN'm, w2 « 4.0 kN/m

1me3281fest, 1 kN = 0.225kips, 1 kN/m = 68.5 pif

Figure 6. Mill building framework.

94

consisting of: top chord truss members (CHtop); bottom chord truss members
(CHbot); vertical web truss members (V); diagonal members of the center three
truss panels (D2); diagonal members of the outer two panels at each end of the roof
truss (D1); column members extending the full height of the structure (COL). No
depth limitations have been specified for any of the member groups. Out-of-plane
bracing is provided at each structural joint of the roof truss (i.e., K, = 1), and the
WWF columns are additionally braced at third points (i.e., K, = 0.33). The user
has also specified that P — A effects are to be accounted for and, therefore, that
second-order analysis is the underlying basis of the design.

The foregoing input data is first read into the Context of the expert system
(Fig. 1), and then the Preliminary stage of the synthesis process begins. The initial
design section determined for all truss members is a 305 x 305 x 13 section, which
is the SHS section with the largest area in the CISC database. A WWF1800 x 632
section, having the largest moment of inertia in the WWF database, is assigned
to the column members. (Section definitions are given in Table 10). A second-
order analysis is conducted and the initial design is verified according to the user-
specified displacement constraints and the strength provisions of the LSD design
standard, [2]. The corresponding maximum constraint response ratio = 0.749,
indicating that the initial design is feasible.

The Solution stage of the synthesis process then begins and, after three con-
tinuous variable design cycles, a discrete design is selected and verified. However,
though the strength constraints are found to be satisfied (maximum response ratio
= 0.945), the horizontal displacement constraint for load case 3 is found to be
violated by 17%. This infeasibility is too large to permit the design process to
continue to the optimization phase and, as such, a new and feasible design must
first be found. However, no provision for this requirement has as yet been allowed
for in the scheme of the Solution stage. Therefore, as discussed in the following,
a new rule must be added to the Knowledge Base that recognizes the infeasibility
condition and then restores design feasibility.

Recall from the ‘member reselection rule’ in the Solution stage (Section 3.2)
that, prior to member reselection, a FORTRAN routine determines the lower bound
area or moment of inertia value that a candidate section must possess in order to
satisfy stiffness requirements during the strength-based member reselection process.
This routine utilizes the results of the previous structural analysis to generate dis-
placement sensitivity coefficients, which are then used to evaluate the contribution
of each member group to the overall structural stiffness. The fact that the current
design for the mill frame is 17% infeasible for a displacement constraint indicates
that the displacement sensitivity coefficients should be updated, that new lower
bounds on section areas and inertias should be determined and that another mem-
ber reselection should take place. With the improved lower bounds, the member
reselection process should produce a feasible or nearly feasible design after the next
verification, although more than one update and reselection may be required.

95

The foregoing strategy to restore feasibility can be implemented by a new rule
that places a subset of the Solution agenda tasks in the Context. This ‘restore
feasibility agenda rule’ is:

rule: restore feasibility agenda
If stage = solution
verify = done
design = infeasible
then member reselection = required
analysis = required
member function = required
verify = required

This rule will only fire after the ‘solution verify’ rule determines that a design in-
feasibility exists and the ‘design = infeasible’ condition is posted in the Context.
This new agenda rule sends four tasks to the Context that have the same effect
as causing the original ‘solution agenda rule’ to backtrack and repeat its last four
design tasks. The rule will continue to fire until feasibility is restored (or nearly
restored; currently a 3% infeasibility is allowed) or until a fixed number of reselec-
tion attempts occurs (default = 3), at which point the Solution stage is allowed
to continue to the optimization phase. (Note: even if some infeasibility still exists
at this point it is generally significantly smaller than that which was originally
detected and, as such, acceptable to the optimizer.)

Returning to the design of the mill frame with the ‘restore feasibility agenda
rule’ now in the Knowledge Base, the expert system executes exactly as before until
the 17% infeasibility is detected for the displacement constraint for load case 3. The
new rule is then fired and the agenda of restorative design tasks is posted in the
Context, causing the corresponding rules to fire and another design to be selected.
The verification of this new design determines that the displacement infeasibility
is reduced to 8% and, also, that the maximum response ratio for the strength
constraints is decreased to 0.80 (from 0.945). The ‘restore feasibility agenda rule’
is fired again and this time the reselection procedure produces a feasible design,
for which the maximum displacement response ratio is 0.986 and the maximum
strength response ratio is 0.641. The foregoing restorative activity is reflected by
the three references to design cycle 4 in Table 8. The expert system then continues
normally to complete the design cycle.

The Solution stage converges to the least-weight structure over the next three
design cycles, none of which experience any constraint infeasibility. The iteration
history of the design process for the Solution stage is given in Table 8. The response
activities of the displacement and strength constraints for the final design are given
in Tables 9 and 10, respectively. Note that the design is strongly controlled by the
displacement constraint for load case 3 (Table 9). In fact, it is precisely because of
this displacement constraint that the response ratios for the strength constraints

96

Table 8. Mill building design history.

Design Design Relative Response___Ratio Feasible Design
Cycle Type Weight Strength Displ. Design? Status
0 initial 1 0.360 0.749 yes -

1 continuous - - - - -

2 continuous - - - - -

3 continuous - - - - -

4% discrete 0.7810 0.945 1.170 NO reselect

4% discrete 0.8544 0.799 1.084 NO reselect

4 discrete 0.8919 0.641 0.986 yes -

5 discrete 0.8905 0.641 0.990 yes best

6 discrete 0.9117 0.642 0.979 yes -

7 discrete 0.9072 0.537 0.966 yes -

8 discrete 0.9072 0.537 0.966 yes converged

are all well below unity (Table 10).

The Critique stage of the expert system begins upon completion of the Solution
stage, and the firing of the corresponding rules produces the following findings
and recommendations concerning improvements to the current design of the mill
building framework:

Finding: 1 [improved fabrication rule]
The width of the diagonal group (D1)
is wider than the width of the chord group (CHbot)

Recommendation: 1.1 - for SHS sections -
Specify a minimum allowable depth limit for the chord group or
specify a maximum allowable depth for the diagonal group.

Finding: 2 [improved profile rule]
The following design group(s) are at their maximum available size:
(CHtop)
(coL)

97

Table 9. Mill building displacement constraints for the final design.

(units: X,Y displacement = mm; Rotation = radians)

Load Node Direction Actual Permitted Ratio of:

Comb’n Name X Y Rot Displ. (+ or -) Actual/Permitted
2 7 * -8.25 80.0 0.103 okay
3 26 * 59.4 60.0 0.990 okay

Group Member Section Load Code Response
Name Name Shape Designation Case Clause Ratio
CHtop ch23 SHS 305X305X13 3 13.2 0.145
CHbot chi2 SHS 203X203X8 3 13.3 0.641
\ v28 SHS 127X127X6 0 10.2.1 0.249
D1 d44 SHS 254X254X11 3 13.2 0.190
D2 d38 SHS 203X203X11 0 10.2.1 0.206
CoL col32 WWF 1800X632 3 13.4 0.369

SHS d x d x t = square hollow structural section;
depth d (mm), width d (mm) and thickness ¢ (mm)
WWF d x m = welded wide-flange section;
depth d (mm) and mass (m) (kg/m)

Recommendation: 2.1
Re-specify a shape category that has larger available sections.

98

Recommendation: 2.2 - for axial members -
If possible, reduce unbraced lengths.

Recommendation: 2.3 - for flexural members -
If possible, reduce unbraced length of compression flange.

The ‘improved fabrication rule’ has determined that the section width of the
web diagonal members (group D1) is wider than that of the bottom chord members
(group CHbot). Recommendation 1.1 suggests to limit either the minimum sec-
tion depth for the chord members or the maximum section depth for the diagonal
members. In fact, the user may choose to impose either or both limits and have
the expert system return to the Solution stage to regenerate a corresponding new
final design (not shown here).

The ‘improved profile rule’ has determined that the final design sections for
both the top chord group (CHtop) and the column group (COL) represent the
largest available cross-sections from their respective databases. Recommendation
2.1 suggests that another shape category containing heavier sections might be more
appropriate for these member groups. This is perhaps a good suggestion for the
top chord members, for which a W shape could replace the SHS shape. However,
this is not an appropriate suggestion for the column members since there are no
larger shapes than WWF.

Recommendations 2.2 and 2.3 suggest that the unbraced lengths of the members
of each fabrication group be reduced so as to increase member buckling strength.
However, this suggestion is only valid if strength constraints or axial slenderness
control the design of these groups. In fact, these strength-based recommendations
are not meaningful for the mill frame because a deflection constraint is strongly
controlling the design (see Tables 9 and 10). This suggests, then, that any strength-
related recommendations of the Critical stage should be made conditional upon
the relative activity of the strength constraints compared to the displacement con-
straints. A corresponding new rule could be added to the Knowledge Base that is
activated when displacement constraints govern the design significantly more than
strength constraints, and which informs the user of alternative actions that may
be taken in this event. This ‘displacement governs rule’ would have the follow-
ing general form (this rule has not yet been formally incorporated into the expert
system):

rule: displacement governs
If stage = critique
displacement governs = yes
then strength-related recommendations = invalid

This rule would fire at the beginning of the Critique stage, after the final application

99

of the ‘solution verify rule’ determines that a displacement constraint controls the
design and the ‘displacement governs = yes’ condition is posted in the Context.
The finding and recommendations of this rule for the present example could be as
follows:

Finding: 3 [displacement governs rule]
The following displacement constraint controls the design:
(X-disp.@ node 26 for load case 3)

Recommendation: 3.1
Ignore any strength-related recommendations from other Critique rules.

Recommendation: 3.2
If possible, relax the displacement constraint bound.

Recommendation 3.1 is passive in that it simply informs the user that any
strength-related recommendations from the other Critique rules are to be ignored
as meaningless because the design is controlled in any event by stiffness conditions.
On the other hand, recommendation 3.2 is pro-active in that it suggests to relax
the governing displacement constraint bound for the design. In fact, providing it
can be implemented, this recommendation makes good sense since it will lead to
a lighter-weight design while, at most, causing the strength-related conditions to
become more critical to the design. Sometimes the change in structure weight can
be significant for only a moderate change in the displacement constraint bound. For
the steel mill frame, for example, suppose the user relaxes the r-axis displacement
bound at node 26 for load case 3 from 60 mm to 80 mm. Reapplication of the
Solution stage for this modification results in a new final design that is 17.6%
lighter than the previous design. For the new design, the displacement constraint
for load case 3 still governs while the response ratios for all strength constraints
have increased from their previous values (in fact, while some ratios increased
more, the maximum response ratio for the strength constraints only nominally
increased from 0.641 to 0.643). Evidently, then, recommendation 3.2 suggested by
the proposed ‘displacement governs’ rule is certainly worthy of consideration for
the mill frame design.

Acknowledgment The reported work has been sponsored by the Natural Sciences
and Engineering Research Council of Canada under Grant A5306. Thanks are due to Dr.
Gordon Cameron, who conducted the underlying research over the past few years while
completing his graduate studies in Civil Engineering at the University of Waterloo.

100

References

[1]

(2]

[3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

__, (1987), ‘SODA: Structural Optimization Design and Analysis,” Software
co-authored by D. E. Grierson and G. E. Cameron, Waterloo Engineering
Software, Waterloo, Ontario, Canada.

Canadian Standards Association, (1984), CAN3-S16.1-M84 Steel structures
for buildings (limit states design).

American Institute of Steel Construction, Inc., (1978), Specification for the
design, fabrication and erection of structural steel for buildings.

American Institute of Steel Construction, Inc., (1986), Load and resistance
factor design specification for structural steel buildings.

Forgy, C. L., (1985), ‘OPS83 User’s manual and report,” Production Systems
Technologies, Pittsburgh, Pa., U.S.A.

Grierson, D. E. and Cameron, G. E., (1988), ‘A knowledge-based expert
system for computer automated structural design,” Journal of Computers
and Structures 30, 3, T41-745.

Cameron, G. E., (1989), ‘A knowledge based expert system for computer
automated structural steel design,” Ph.D. Thesis, University of Waterloo,
Waterloo, Ontario, Canada.

Fleury, C., (1979), ‘Structural weight optimization by dual methods of
convex programming,’ Int. J. of Num. Meth. in Engng. 14, 1761-1783.

Grierson, D. E. and Cameron, G. E., (1989), ‘Developing an expert system
for structural steel design: issues and items,” Proceedings of AIENG’89, The
Fourth International Conference on Artificial Intelligence in Engineering,
Cambridge, U.K., July 10-14.

Cameron, G. E. and Grierson, D. E., (1989), ‘An expert system for
standards-based structural steel design,” Proceedings of Sixth ASCE
Conference on Computing in Civil Engineering, Atlanta, Ga., U.S.A.,
September 11-13.

A Knowledge-Based Model for
Structural Design

B.H.V. Topping and B. Kumar
Department of Civil Engineering
Heriot- Watt University, Riccarton,
Edinburgh, EH14 4AS, United Kingdom

Abstract This paper presents a model for structural design based on ideas from artificial
intelligence, particularly knowledge-based technology. The model presented is different
from conventional models in that there is a more elaborate treatment of the reasoning
processes involved in the overall design process. The model is thought to be more amenable
to automation. Implementation of part of the model is presented in reference [1].

1 Introduction

This paper presents a model for structural design which forms the framework for
the development of a knowledge-based system for structural design. Components
of the model are presented here. The model presented here is called INDEX,
which stands for INDustrial Building Design EXpert. The reason for calling it
INDustrial Building Design EXpert is that low rise industrial steel buildings are
used as examples to illustrate the model. However, it is suggested that the model
is general enough for all structural design.

In section 2 a description of the structural design process is presented. Section 3
discusses some aspects of the DESTINY model [2]. Section 4 describes the INDEX
model. Section 5 is a comparison of the two models highlighting the differences
between the two. Finally, section 6 contains the summary and conclusions for this
paper.

101

B. H.V.Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 101-121.
© 1992 Kluwer Academic Publishers.

102

2 Structural Design

2.1 The Process

A civil engineering structure may be defined as an entity which will withstand
imposed design loads and transmit them to the foundations. In doing so, the
structure must fulfill certain engineering and other architectural constraints. The
structural design process includes the proportioning and sizing of such a structure
to ensure the appropriate levels of safety and serviceability specified in design
documents such as Codes of Practice and Building Regulations. The whole design
process may be divided into three distinct stages:

e Preliminary design : In this stage, the functional requirements and con-
straints are synthesised into a preliminary design concept. This involves the
selection of a potential structural configuration satisfying layout and spatial
constraints. This stage frequently includes an approximate analysis to eval-
uate the response of the alternative candidate structures selected for further
consideration.

e Detailed design : This involves the detailed design of the candidate struc-
ture selected in the preliminary design and consists of the following three
sub-stages:

a. structural analysis ;
b. proportioning and sizing the structural members ; and

c. checking all the applicable design constraints.

This stage typically consists of several iterations between analysis, propor-
tioning and sizing to ensure that all applicable constraints are satisfied with
economy of design. Most of these constraints are specified in the applicable
design codes. There may also be a number of external constraints, such as
restrictions on the height of a structure. A large and significant deviation
in the properties of the components assumed at the analysis and proportion-
ing stages might necessitate another analysis, proportion and sizing-check
cycle. This is typical of most design problems. The iteration continues until
a satisfactory design is determined. In some cases, there may be a return to
the preliminary design stage resulting in a revision of the chosen structural
concept.

e Design documentation : Detailing of the different components and prepa-
ration of the design documents.

103

R Think of possible solutions
{— {decisions based on experience)

. '

Evaluate feasibility
(simple calculations/expenience)

.
|
}
|
4 }
b
|
|
K

Y Idealise solution
(‘engineering judgement’)

¢ y

! Analyse

N (calculations, possibly including progressive
|

|

refinement, trial-and-error and optimisation)

4 !

l Element design

4\ (calculations/reference to Codes
| of Practice, standard data etc.)
1/ }

4 Presentation calculations

L. (ctten only atter extensive rough
calculations, selection and refinement)

Figure 1. The different stages of structural design after Plank and
Bell [3]

2.2 Discussion

Figure 1, after Bell and Plank (3], shows the different stages of the structural design
process and indicates the influencing factors (experience, heuristics etc.) at every
stage. It is important to note the feedback that may become necessary at any
stage, when the designer may be forced to go back to almost any earlier stage and
reconsider his decisions. This aspect of design is the most difficult to incorporate
in computer programs.

The above description of the structural design process is only a description of
the different stages in structural design. However, the more important aspect of

104

structural design is the inference mechanism involved. As discussed in the previ-
ous paragraph, the designer may be forced to go back and reconsider his earlier
decisions and even change them in certain circumstances, as shown in Figure 1. In
terms of Artificial Intelligence (AI), it would be said that there can be recurring
changes in the current set of beliefs throughout the design process. This may arise
owing to a sudden change of specifications or the emergence of new constraints,
possibly in conflict with the existing ones. For a detailed discussion on the different
aspects of non-monotonic reasoning, refer to [4, 5]. A more detailed treatment of
the non-monotonic nature of the structural design process and ways of overcoming
it is presented in [6].

3 The DESTINY Model

3.1 Architecture

The DESTINY model is based on a blackboard architecture [7]. The sole pur-
pose behind selecting this architecture is to facilitate communication between the
different experts involved in the structural design process, e.g., architects, space

planners, service engineers and so on. Figure 2 is a schematic representation of the
DESTINY model.

3.2 Blackboard
DESTINY’s blackboard is divided into two parts. The first part is called the Work-

ing level, which contains entries relating to the execution of the various knowledge
modules (KMs). The second part is split into eight levels: viz., Top, Functional,
Material, 3D, 2D, Location, Components and Property-Response. These levels
contain entries relating to the different stages of the design process and may be
seen as a hierarchical decomposition of the building design process, i.e., they de-
fine the abstraction hierarchy of the design entities. Figure 3 shows the abstraction
hierarchy on the blackboard of DESTINY |[2].

3.3 Knowledge-Base

The knowledge-base of DESTINY is organised into a hierarchy of three levels. Each
level comprises a number of knowledge modules each performing a particular task
in the design process. The three levels of DESTINY’s knowledge base are:

1. the strategy level;
2. the specialist level; and

3. the resource level.

105

Blackboard Knowledge-base

Strategy level

Working

TACON

Top

Functional

Specialist level

30 Material
- TS T
ALL-RISE

MASON OATON CRITIC
20

Location Resaource level

Components M@J
Property-Response

AUPROG oens CODES GEOMOD £1C.

AN

L Inference mechanism

Agenda

Monitor
(Scheduler)

Figure 2. Schematic Model of DESTINY (2]

106

pans- —ad

part-of functional
Lateral-load / Gravity-load

tealt 3D-Material
/3D- Ia(cml ma; / 3D-gravity-ma

M e

Lzﬂ”““g/ / _rar_/- ﬁé’;’é‘/

G-alt .b M éé Location
|

gommnmr-O’{gmg,!cqomppnmU 7 | Component,
1 component-of yad
"/ specificcomponent-groups
=~

ompoacat \ Froperty-Response
Lptoperty " _respanse e

Figure 3. Abstraction hierarchy levels on the blackboard of DES-
TINY [2]

107

A brief description of these levels may be found in reference [2|. A relatively
detailed description of the modules relevant to the discussions of this paper will
be presented here. The module that is directly relevant to the extension of the
DESTINY model proposed by this work is CRITIC. The purpose of this module
is to check whether a design generated by the other modules (i.e., ALL-RISE,
MASON and DATON) is satisfactory to perform the intended functions. This task
of CRITIC is divided into two sub-tasks: viz., Criticize and Evaluate. The purpose
of the Criticize sub-task is to assign one of the following four values to a design:

1. unsatisfactory;
2. modifiable;

3. fixable;

4. satisfactory.

There are four sets of production rules which determine one of these values for
a particular design. The different cases which determine when a particular design
is assigned one of these values are discussed below:

1. Unsatisfactory - this value is assigned to a design if the intended behaviour
of the structure is not achieved.

2. Modifiable - this value is assigned to the design if there are significant dif-
ferences between the assumed and the computed properties of the structure.
With a modifiable design a re-analysis is recommended.

3. Fixable - this value is assigned to the design if there are minor differences
between the assumed and the computed properties of the structure. A fixable
design is one which does not have to undergo a re-analysis and requires just
minor adjustment to some of its parameters.

4. Satisfactory - this value is assigned to the design if it satisfies all the speci-
fications previously laid down.

Once a design is found to be satisfactory then a detailed evaluation is carried
out by CRITIC as the Evaluate sub-task. For the descriptions of other knowledge
modules reference should be made to reference [2].

3.4 Inference Mechanism

As with any other blackboard system, the inference mechanism of DESTINY also
consists of an agenda and a monitor. The agenda contains a list of the sequence of
specialist level knowledge modules to be executed from the elements of the following
set:

108

Top
Functional
3D-material «—
3D <~
2D «—
Location -~—
o—— get information from
Components “«—
<«—— post information to
Property-Response o—ro

Figure 4. The blackboard levels at which CRITIC posts and receives
information adapted for reference [2]

{ALL-RISE MASON DATON CRITIC}
The initial agenda called Specialist Agenda (SPA) set by TACON is:
{ALL'RISE DATON MASON DATON CRITIC}

The preliminary design is done by ALL-RISE and DATON. Once the agenda
has been set up by the strategy level knowledge module, TACON, the monitor
takes the first module from it and executes it. All the modules in the agenda are
executed sequentially until it is empty. All the sub-tasks of a module are also
executed sequentially until the module is completed. TACON is activated only
after the execution of CRITIC. Conceptually, TACON may be activated at any
stage when a more flexible mechanism is required.

3.5 Interactions between the knowledge modules

Figure 4 shows the levels on the blackboard to or from which the CRITIC module
posts and retrieves information. Arrows indicate posting information while the
circles indicate retrieval of information.

4 The INDEX Model

4.1 Architecture

The architecture of the INDEX model is the same as the DESTINY model, i.e., the
blackboard architecture. The reasons for selecting this architecture are the same

109

as those for DESTINY.

4.2 Blackboard

The abstraction hierarchy on the blackboard of INDEX is similar in nature to
that on the blackboard of DESTINY since the abstraction hierarchy is essentially
a translation of the stages in the structural design process which are the same in
both cases. This is why a separate abstraction hierarchy is not given for INDEX.

4.3 Knowledge-Base

4.3.1 Brief description The knowledge base of INDEX consists of a number
of knowledge modules as shown in figure 5. The knowledge modules are organised
into a hierarchy of two levels, the specialist level and the resource level. The
knowledge modules at the specialist level consist mainly of heuristics and other
knowledge which are specialist-dependant. The knowledge modules at the resource
level consist mainly of textbook knowledge. All the knowledge modules contain
declarative as well as procedural knowledge. A brief description of the knowledge
modules at the different levels is given below :

e Specialist level : This consists of knowledge modules primarily containing
experience-based heuristics, but, some textbook knowledge is also stored at
this level. This level consists of the following knowledge modules :

o ALTSEL : This module is responsible for the ALTernative SELection
of the feasible structural systems and decides on different design pa-
rameters for the required frame spacing, or the choice of a single or a
multi-bay system etc.

o STRANEX : This module carries out the modelling and analysis of the
chosen structural system by ALTSEL.

o DETDEX : This carries out the detailed design, i.e. detailed propor-
tioning and sizing of the components of the chosen structure.

o EVALUATOR : This module evaluates the different alternatives gener-
ated by the system.

o OPTEX : This module consists of various heuristics and rules to be used
for the optimisation of the structures.

o DESCON : This module is responsible for solving problems arising out
of a change of specifications or constraints described in section 2.2. DE-
SCON acts as a DESign CONsultant to the other modules in such sit-
uations.

110

SPECIALIST LEVEL

ALTSEL ||STRANEX] | DETDEX OPTEX || EVALUATOR|| DESCON
—Sw S - 7 7z P
BLACKBOARD
)

V.-
STRANA DETDES STAND STROPT DBs

RESOURCE LEVEL

Figure 5. Schematic model of INDEX

111

¢ Resource level : This level generally consists of algorithmic programs such
as structural analysis programs, standard codes, optimisation routines etc.
The knowledge modules at this level consist of the following:

o STRANA : This module includes the STRuctural ANAlysis programs.

o DETDES : This module is responsible for the DETailed DESign of the
structure, i.e. detailed sizing of the components of the structure.

o STAND : This module includes the provisions of the applicable STAN-
Dards and is responsible for checking these standard constraints.

o STOPT : This module consists of STructural OPTimisation routines.

o DBs : These DataBases include the different dimensions and sectional
properties of various structural sections, e.g. UBs, UCs etc.

4.3.2 Detailed description This section describes the Specialist level knowl-
edge modules in some detail.

1. ALTSEL

The main tasks for this module are as follows:

e selection of the feasible alternative structural systems;
e undertaking a preliminary analysis of the structural systems;

o undertaking a preliminary sizing and proportioning of the components
of the systems;

e undertaking preliminary checks on the components;

e posting relevant constraints for each of the alternative systems to the
blackboard for later use by the other modules; and

¢ undertaking a preliminary evaluation of the systems.

2. STRANEX
The main tasks performed by the STRANEX module are as follows:

¢ to model the structural systems generated by ALTSEL;

e to select the structural analysis strategy, i.e., the appropriate type of
analysis;

e to prepare the input data for the analysis program; and
e to return the output data from the analysis program.

STRANEX can be seen to be performing a similar task as SACON [8]. The
different sub-modules of STRANEX are as follows:

112

¢ MODELLER - which models the structure for the analysis;

¢ LOADEX - which decides the type and magnitude of loadings imposed
on the structure;

e PLANNER - which determines the appropriate analysis program to be
used; and

¢ INTERFACE - which prepares the data for the analysis program and
receives the output data back from it.

e The actual analysis is carried out by the analysis programs at the re-
source level . This knowledge module needs an interface with the anal-
ysis programs. An interface between PROLOG and FORTRANT77 was
implemented for this purpose, details of which can be found in [9].

3. DETDEX

The tasks performed by DETDEX are as follows:

e to size the different components of the structure;
e to select the applicable provisions of the Codes of Practice; and

e to check the constraints prescribed by the Codes as well as other soft
constraints;

The functions of this module can be seen to be quite similar to that of
SPEX [10].

OPTEX

This module has the following tasks:

o to formulate a model for optimisation of the structure;
o to select the appropriate optimisation algorithm to be used;
e to prepare the input data for the optimisation program; and

e to receive the output from the optimisation program.

The following are the sub-modules of this module which perform the above-
mentioned tasks:
¢ MODELLER - formulates an optimisation model;

o PLANNER - determines the appropriate optimisation algorithm to be
invoked;

¢ INTERFACE - sends data to and receives it from the optimisation pro-
gram.

113

This module also needs an interface with the optimisation programs. The
same interface between PROLOG and FORTRANY77 discussed in reference
[9] is used for the purpose.

. DESCON

This module’s function is to propose a solution to a design or partial design
which is not satisfactory owing to a change of specification or a violation
of some constraints. Thus, if a design is unsatisfactory, the following two
possibilities exist:

o the design is either modifiable ; or

e the design is not modifiable and a re-design has to be undertaken.

In the case of a modifiable design, again the following two possibilities exist,
depending upon the extent and nature of modification to be carried out:

e the modification will require a re-analysis of the structure; or

e the modification will not require a re-analysis of the structure.

Based on the above criteria, the task of this module is to decide if a design
is one of the following:

e modifiable; or

e re-designable.

This module is similar to the CRITIC module of DESTINY. However, there
are very significant differences in their scope and operation which will be
discussed in section 5.

Once a design or partial design is categorised as discussed above, DESCON’s
tasks also include the following:

¢ to formulate the revised set of constraints in cases of a modifiable design;
e to suggest the exact nature of modifications to be carried out; and

e to post constraints to the appropriate modules.

The need for this additional module at the Specialist level will be discussed
in section 5. This module comprises the most important difference between
the DESTINY and INDEX models.

. EVALUATOR

Once all the alternatives generated by ALTSEL have been designed satisfac-
torily, all of them are passed to this module. The task before this module is to
evaluate all the designs based on different criteria and rank them accordingly.
This module was not developed in this work.

114
4.4 Inference Mechanism

Unlike DESTINY, the inference mechanism of INDEX is handled in two ways.
In routine situations, the sequence of execution of the knowledge modules is pre-
defined, which is as follows:

(ALTSEL->STRANEX->DETEX->0PTEX->EVALUATOR)

Clearly, this sequence does not include the DESCON module. The reason is
that DESCON may not be invoked in every case. Depending on the outcome of
the other modules, DESCON may or may not be invoked. DESCON does not have
to be directly invoked since the control mechanism rests mostly in the hands of
DESCON itself. In such cases, DESCON sets up the sequence of execution of any
other module. The different cases that may arise before DESCON is invoked will
be discussed in section 5.2.

5 Comparison between the DESTINY and
INDEX models

Although the INDEX model is based on the DESTINY model, there are significant
differences between the two. The INDEX model can be seen as an extension of the
DESTINY model as will become clear later.

Figure 5 indicates that the INDEX model has two levels, viz., the specialist and
the resource level. For the sake of uniformity, the terminologies used are the same
as for the DESTINY model (figure 2). However, the DESTINY model proposes an
additional level called the Strategy level. INDEX does not recognise the need for
this level. The reason is that in DESTINY, the execution of modules is sequential
and does not require a separate set of rules to define. The sequence may be pre-
defined, which is how it is undertaken in INDEX. However, if there is a requirement
to change the sequence, there will be a need for a set of rules. This will become
clear from the discussions in section 5.2.

Apart from this difference, the other major difference is that of an additional
module at the specialist level, DESCON (In fact, there are two additional mod-
ules at the specialist level: viz., OPTEX and DESCON. However, the addition of
OPTEX is not very important from the conceptual point of view of the design. It
can only be considered to be an additional facility of the system). This difference
is an important one as the functions of this module are considered to be vital for
an integrated design system. The remaining modules at the specialist level can be
seen to be quite similar in both cases.

115

5.1 Differences in the knowledge base

It was decided that an additional module was required to tackle some (if not
all) problems detected by the CRITIC module of DESTINY. The detection of a
problem (e.g., nonconformity to standard requirements) is done by the respective
modules themselves in INDEX. The DESTINY model proposes passing back the
control to either MASON or DATON. Unlike DESTINY, it is proposed to transfer
the control from whichever module the problem is detected in to DESCON in
every case. DESCON in turn, transfers the control to one of the other three
design modules at the specialist level: viz., ALTSEL, STRANEX or DETDEX.
The only exception is the satisfactory design in which case the design terminates
at EVALUATOR. In some cases, DESCON considers situations which may not
have clearly defined constraints in structural engineering terms. For example, at
some stage, a purlin may have to be removed after it has been designed. The
removal of a purlin is not an engineering constraint but may give rise to many
of them. The input to DESCON in such cases relates only to the fact that the
purlin has to be removed and not that the constraints relating to the stability of
the rafters are violated. In these circumstances, DESCON’s task is to infer the
effects of any such changes to the existing design or partial design and formulate
new constraints and propagate them to the appropriate modules. CRITIC can
only detect the problem and suggest whether the structure is:

¢ unsatisfactory; or
¢ modifiable; or
e fixable; or

e satisfactory.

The DESTINY model does not indicate whether CRITIC is also responsible
for suggesting to the appropriate module the precise modifications to be carried
out to a design. It was proposed that very specialised knowledge may be required
to accomplish such a task and, hence, the additional module, DESCON was de-
veloped. The basis on which CRITIC suggests whether a design is modifiable or
fixable is whether or not a re-analysis of the structure is required. The only ba-
sis used by CRITIC to decide on such a re-analysis is the difference between the
assumed and computed properties of the structure. In fact, such a decision could
be quite a subjective one and may require other considerations to be taken into
account. Furthermore, CRITIC cannot handle the emergence of new constraints
or a change in specifications. CRITIC’s scope is thus limited, and suffers from an
important and serious drawback. DESCON of INDEX may be seen as an extension
of CRITIC of DESTINY in that it also handles situations where some constraint
suddenly emerges as a consequence of either:

116

(i) having been overlooked or ignored earlier; or
(ii) abrupt changes requested by the client; or

(iii) poor co-ordination between the structural and some other designer (e.g.,
services).

DESCON’s task is to suggest a qualitative solution. Subsequently, the actual
quantitative solution is carried out by whichever module to which DESCON passes
control. DESCON is different from the other specialist modules in that its task
is to suggest changes to an existing or proposed design rather than designing a
structure from scratch given only the specifications. Its task is considered to be
more difficult as it is required to explore in a more intelligent way the alternative
solutions which will force least modifications to the existing or proposed design at
the least expense. The problem is more critical in the case of an existing structure
or an already fabricated design. The most knowledge-intensive part of such an
exercise is to find out the design entities which play the most important role in
a particular case. The details of the problem-solving strategies used by DESCON
are discussed in detail in reference [11].

5.2 Differences in the interactions between the different
modules

Figure 4 shows the levels on the blackboard of DESTINY to which CRITIC posts
information. It is clear from this figure that in no case does it pass control back to
the level where the feasible structural systems are selected. This is one improve-
ment which the INDEX model proposes. In the case of a re-designable design,
control is passed back to the ALTSEL module where a completely new alternative
is selected form those generated earlier by ALTSEL.

Figures 6 and 7 are diagrammatic representations of the interactions between
different knowledge modules of INDEX and DESTINY repectively. Yet another
major difference between the two models is illustrated by these two figures. The
interactions between the modules of INDEX will be explained in some detail before
highlighting the differences from the interactions in the DESTINY model.

By considering figure 6, it is quite clear that the knowledge modules, ALTSEL,
STRANEX, DETDEX, OPTEX and EVALUATOR are executed sequentially in a
routine case. DESCON may or may not be invoked in particular cases. DESCON
is only invoked when a problem is detected by any module. The transfer of control
to DESCON can take place at any stage of design apart from the routine case
when complete designs are passed to EVALUATOR to evaluate. Whenever a new
constraint arises or there is a sudden change of specification, control is passed to
DESCON. The transfer of control from DESCON to the other modules depends

117

/] ALTSEL NG
/ AN
/ 1 \
// STRANEX N \\
£
[AN
g /] DETDEX \ \
o, MRS
1 /) ¥
l / OPTEX \ ¥ |
(N o |
\ A \ vl /
\ o\ EVALUATOR |) / /
\ \ / '/ /< - - Possile flow
\ \ / ; / «—— Definite flow
AN

Figure 6. Interaction between the KMs in the INDEX model

118

N
ALL-RISE N
S
¢ N
MASON N \
N \
AN
AN \\
DATON T~ \
AN
: A
CRITIC = > TACON

< - - Possible flow
<—— Definite flow

Figure 7. Interaction between the KMs in the DESTINY model

119

on the nature of the problem detected and the consequent decision taken by DE-
SCON. The most straightforward case handled by DESCON is the re-designable
design where it simply passes control to the ALTSEL module. The most complex
case handled by DESCON is the modifiable design. Here, the precise nature of
modifiability is the main problem for DESCON. Transfer of control is always to
DETDEX. However, depending on whether or not a re-analysis is required, DET-
DEX has to pass control to either STRANEX or to EVALUATOR after carrying
out standards checking. For example, if it is suggested by DESCON that the de-
sign is modifiable and that the exact nature of modification to be carried out is to
increase the section size of one of the members of the structure, DETDEX will pass
control to STRANEX to carry out a re-analysis. Even if control is passed back to
STRANEX, the standards provisions still have to be checked before the design may
be passed to EVALUATOR. This process continues until a satisfactory design has
been found. Therefore every successful design terminates at EVALUATOR.

In DESTINY, the elements of the Specialist Agenda (SPA) are set by the Strat-
egy level knowledge module, TACON. The TACON module is activated only after
the execution of the CRITIC module. Although there is a mention [2] of the possi-
bility of activating TACON after the execution of each specialist level module, the
mechanism is not very clear. In the INDEX model, it is proposed that there must
be a facility in the model to allow for any non-monotonicity whenever it arises.
It is thought that such a situation may arise at any stage and even partial designs
may have to be assessed by DESCON. DESTINY lacks this important feature.

In INDEX, part of DESCON’s purpose can be seen to be quite similar to that of
TACON’s in DESTINY: i.e., invoking the specialist KMs. Invocation of DESCON
is quite similar to that of TACON in that every time any module posts information
to the blackboard indicates a problem. But, the difference lies in the scope and
purpose of knowledge in DESCON.

As discussed earlier, DESCON may be invoked in the following situations:

o Whenever a change of specification or constraint occurs. This can happen in
the following situations:

1. at any stage in the design process, in which case even a partial design
may be passed to it; or

2. after the design has been completed, in which case the complete design
will be passed to it.

e whenever a violation of constraints occurs.

The transfer of control to DESCON may be undertaken by any of the specialist
KMs. In contrast, the CRITIC module is only activated after the other KMs of
the SPA have been executed in the sequence prescribed by the SPA.

The scope and purpose of knowledge in DESCON has already been explained
earlier. It is an extension of the CRITIC module of the DESTINY model.

120

6

Summary and Conclusions

A model for integrated structural design, INDEX, was presented. The model pre-
sented was an extension of an earlier model, DESTINY. Some limitations of the
DESTINY model were pointed out and the INDEX model resulted from incorpo-
rating the missing features of the DESTINY model. It was concluded that the
structural design process was a non-monotonic process and any system developed
for structural design needed to have facilities to allow for this non-monotonocity.
All the suggested extensions to the DESTINY model centre on this feature of design
which is held to be fundamental.

References

1]

(2]

(3]
4]
(5]
[6]
(7]

(8]

[9]

Kumar, B., Topping, B.H.V., “Knowledge-Based Preliminary Design of (low
rise) Industrial Buildings”, in this volume, Optimization and Decision
Support Systems in Civil Engineering, Kluwer Academic Publishers, 1991.

Sriram, D., “Knowledge-based Approaches to Structural Design”, Ph.D.
Dissertation, Department of Civil Engineering, Carnegie-Mellon University,
Pittsburgh, U.S.A., 1986.

Bell, T., Plank, R.J., “Microcomputers in Civil Engineering”, Construction
Press, London and New York, 1985.

McDermott, D., Doyle, J., “Non-monotonic Logic I”, Artificial Intelligence,
Vol. 13, 1980.

Reiter, R., “On Reasoning by Default”, TINLAP-2, University of Illinois at
Urbana-Champaign, 210-218, 1978.

Kumar, B., Topping, B.H.V., “Non-Monotonic Reasoning for Structural
Design”, Civil Engineering Systems, v.7, n.4, 209-218, 1990.

Hayes-Roth, B., “A Blackboard Architecture for Control”, Artificial
Intelligence, Vol. 26, 251-321, 1985.

Bennett, J.S. et. al., “SACON: A Knowledge-based Consultant for Structural
Analysis”, Technical Report STAN-CS-78-699, Stanford University, Palo
Alto, California, U.S.A., 1978.

Kumar, B., Chung, P.W.H., Topping, B.H.V., “Approaches to
FORTRAN-PROLOG interfacing for an Expert System Environment” in
“The Application of Artificial Intelligence Techniques to Civil and Structural
Engineering”, Ed., Topping, B.H.V., Civil-Comp Press, Edinburgh, 15-20,
1987.

121

[10] Garrett, J.H., Jr., Fenves, S.J., “A Knowledge-based Standards Processor for
Structural Component Design,” Report No. R-86-157, Department of Civil
Engineering, Carnegie-Mellon University, Pittsburgh, U.S.A., 1986.

[11] Kumar, B., Topping, B.H.V., “Knowledge-Based Processing for Structural
Design”, Proceedings of the Institution of Civil Engineers, Part 1, v. 90,
421-446, 1991.

Knowledge-Based Preliminary Design of
Industrial Buildings

B. Kumar and B.H.V. Topping

Department of Civil Engineering
Heriot- Watt University, Riccarton,
Edinburgh, EH14 4AS, United Kingdom

Abstract This paper presents details concerning the implementation of one of the
knowledge modules for the structural design model presented in reference [1]. A black-
board architecture was proposed for the overall model as well as its different modules. The
module described here was called ALTSEL and was responsible for selecting (generating
and evaluating) alternative structural systems for low-rise industrial buildings.

1 Introduction

The overall INDEX model has been described in (1, 2]. This paper describes the
preliminary design module of INDEX called ALTSEL. ALTSEL represents a simple
but effective rule-based prototype for the preliminary design of industrial buildings.
The use of rule-based programming is illustrated by describing the development
of ALTSEL. A description of knowledge elicitation techniques and some practical
lessons learnt from using them will also be discussed. Some useful features of the
Edinburgh Prolog Blackboard Shell which simplified the development of ALTSEL
will be described. These shed light on the utility of blackboard architecture for a
knowledge-based design system.

2 The AI tool used in this implemetation

The Edinburgh Prolog Blackboard Shell (EPBS)(3] was used in the development of
DESCON. The rule syntax of this knowledge-based system shell has the following
form:

if Condition
then Goal
123

B. H.V.Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume I, 123-147.
© 1992 Kluwer Academic Publishers.

124

to Effect
est Est.

2.1 Components of a rule in the EPBS

The following sections briefly describe each of the components of a rule.

2.1.1 Conditions of a rule The ‘Conditions’ of a rule are a combination of
tests concerning the blackboard. Essentially they consists of testing the presence
or absence of a certain type of entry on the blackboard.

2.1.2 Goal of a rule The ‘Goal’ is a Prolog procedure executed by each rule.
This gives the user the flexibility of only partially specifying an entry when writing
the rule and further specification comes from either the success of the condition or
by calling the ‘Goal’. In cases where no further specification is required other than
that prescribed by the condition, the Prolog goal ‘true’ may be called which will
succeed immediately.

2.1.3 Effect of a rule The effect of a rule may be one of the following:

e add[Index,Fact,Cf], which adds an entry Fact on the blackboard under the
index Index with certainty factor Cf,

e or ‘Action’ which takes an action,

e or ‘Delete’ which deletes an entry from the blackboard,

where Index, Fact, Cf and Action are PROLOG terms.

2.1.4 °‘Est’ of arule ‘Est’refers to the usefulness of a rule. By default, simple
integers may be assigned to ‘Est’ in which case the ‘usefulness’ of the rules increases
with the value of their ‘Ests’. This default scheme may be over-ruled by assigning
arbitrary Prolog terms to the Ests and these may be compared by a predicate
defined by the developer. ‘Est’ provides a way of resolving conflicts regarding the
firing of rules. In cases where more than one rule is eligible to be fired due to the
success of their conditions, the rule with the lowest ‘Est’ is fired first, then the one
with the next higher ‘Est’ and so on.

3 Some features and components of ALTSEL

The architecture of ALTSEL is a blackboard system. It consists of different
knowledge-modules surrounding and communicating through the blackboard. The

125

input to ALTSEL is the general layout and other spatial constraints of the build-
ing. Since generally the layout of the design is fixed by architectural design, the
domain of the system is restricted to structural design.

3.1 Blackboard

The general description of the blackboard of INDEX, described in reference [1, 2],
also apply ALTSEL. In fact, all the modules of INDEX can be seen to be separate
knowledge-based prototypes. ALTSEL’s blackboard is divided into different parts
which contain entries posted to it by the different sub-modules of ALTSEL in the
course of the solution process. The levels on the blackboard of ALTSEL may be
seen as a hierarchial decomposition of the preliminary industrial building design
process.

4 Knowledge Base Development

4.1 Knowledge Elicitation - Introduction

The construction of a knowledge-based expert system is an attempt to embody the
knowledge of a particular expert within a computer program. The knowledge used
in solving problems must be elicited from the expert to incorporate in the expert
system. It is recognised that the elicitation of knowledge from experts is one of
the major obstacles in the construction of expert systems. In many cases, the
main reason for this is that experts find it hard to articulate and make explicit the
knowledge they possess and use. An important part of a knowledge engineer’s job is
to help the expert to structure the domain knowledge and to identify and formalize
the domain concepts. Although a number of knowledge elicitation methods do exist
[4], the area is not well understood and few tools exist to mechanise the process.

In the following sections, a simple model of knowledge elicitation will first be
presented followed by some specific techniques. Finally, in section 5, an account of
the knowledge elicitation process for ALTSEL will be presented to highlight some
of the practical issues.

4.1.1 A Framework For Knowledge Elicitation The framework is based
on three generally accepted ideas:

e there are different types of knowledge;

e there are different knowledge elicitation methods for different types of knowl-
edge; and

e the knowledge elicitation process may be divided into sub stages.

126

e]

Conceptual Structures

v

Test and Improve

Rules

Figure 1. Sequence of Knowledge Elicitation

There is no doubt that there are different types of knowledge, even in a single
domain of expertise. However, it is not clear how knowledge should be classified
into different types. “Finding a way to taronomise knowledge on a principled
basts ts a difficult and ambitious task that has eluded philosophers for thousands of
years” [5]. For the practical purpose of building expert systems, knowledge may
be conveniently divided into three types: facts, conceptual structures and rules.
Facts are simply a glossary of terms and a list of domain entities. In an engineering
domain, this type of knowledge may be a collection of engineering concepts and the
names of the components of a particular structure or any other engineering artifact.
The second type of knowledge, conceptual structures, describes the relationships
between identified concepts and components. Finally, rules are the reasoning part
of the domain knowledge. Facts and conceptual structures are reasonably static
and are easier to elicit than rules. Figure 1 illustrates a simple but natural sequence
of knowledge elicitation.

In each part of the cycle, a suitable elicitation technique should be used. Some
studies have been carried out to match techniques with types of knowledge [4, 5].
In the next section, for each type of knowledge, a knowledge elicitation technique
which has been identified as particularly suitable, is described.

4.1.2 Techniques There are two classes of techniques for knowledge elicitation
as follows:

127

¢ psychological techniques, which involve some kind of interaction between
the knowledge engineer (KE) and the domain expert (DE); and

e machine induction, in which the computer automatiaclly induces rules
from examples.

For a domain such as structural design, machine induction seems inappropriate.
Bloomfield [6] developed a set of criteria for selecting domains suitable for the elic-
itation of knowledge by machine induction. One such criterion is that “any chosen
domain must contain sufficient ezamples that it is possible to construct a training
set which constitutes a comprehensive encapsulation of ezxpertise in that domain”.
Structural design expertise cannot be completely encapsulated in examples. Hence,
only psychological techniques are considered.

4.1.3 Interviews Direct interviewing is the technique most familiar to KEs
and DEs. It is considered good practice to start the knowledge elicitation pro-
cess using a technique with which the DE feels comfortable. An interview may
range from an informal ‘chat’ to a highly structured discussion. Some interesting
questions for an interview may be:

¢ if you had a good new graduate just starting to work for you what would you
expect him to have learnt after six months ?

e you find a book concerning your application area which later turns out to be
the book you wish you had started in the field. What chapter headings are
in it ?

Using this technique, much information about the terminology and the main
components of the domain may be generated in a relatively straightforward way.
The problem is how to probe further so that ideas may be pursued to a greater
depth. To ensure that an interview is productive, the KE should have a good
questionnaire prepared beforehand to help him direct the discussion. In addition
to open questions, he needs to have some clear and specific ones. The DE may also
be asked to prepare and deliver an introductory lecture.

4.1.4 Concept Sorting As experts use specialist knowledge to solve problems
they are likely to have a global perspective on how a domain is organised. Concept
sorting is appropriate where there is a large set of concepts which need to be
organised into a manageable form. The basic procedure is similar to the categorical
knowledge elicitation technique described by Regan [7]:

1. collect a set of concepts in the domain. This may be obtained from the
literature or from an introductory talk or from the DE;

128
2. write each concept on a small card;
3. ask the DE to sort the cards into groups;
4. ask the DE to label each group;
5. discuss with the DE each group to find out its characteristics;

6. ask the DE to specify the relationship between the groups and to organise
them into a hierarchy.

4.1.5 Protocol analysis In this technique, the DE’s behaviour is recorded
(either video or audio) as they work through a problem or task, and the protocol
is transcribed and analysed. In this way, the KE is not only given the answer
to the problem but also the information about the problem solving process itself.
In practice this technique is found to be very helpful. Though DEs may have
difficulty in stating the general rules that they use, they can usually identify the
specific rules which they are applying. However, it is easy for familiar ideas to
be taken for granted, so they need to be kept aware of any tendencies towards
omitting trivial details. For this technique to be effective a representative set of
problems should be chosen, otherwise there could be serious errors of ommission.
There are three different ways of generating protocols:

¢ think-aloud protocols - the DE thinks aloud during the solving of a problem;

e retrospective verbalization - the DE solves a problem before reporting how
it was solved;

o discussion protocols - a small number of DEs discuss with one another as
they attempt to solve a problem.

Each of these variations has its own advantages and disadvantages. An im-
portant problem with think-aloud protocols is that the reporting may interfere
with the DE’s task performance. Related to this is any need to conform to real
time constraints. For example, solving a mathematics problem allows the math-
ematician to stop and ponder. However, an operator dealing with an emergency
may require immediate responses. These criteria may help when having to decide
between think-aloud protocols and retrospective verbalization.

Expert system projects are often based on collaboration with a single DE. In
fact most of the literature recommends this [8]. However, discussion protocols
are helpful because they provide different perspectives on how a problem may be
solved by clarifying alternatives and resolving conflicts. The problem here is that
of managing the discussion. Avoiding the problem, the strategy that Mittal and
Dym [9] adopted was to interview one DE at a time. Although this technique

129

worked for them, it provides very little opportunity for the DEs to interact with
one another and to discuss issues.

A potentially useful computer tool for collaborative problem-solving in face-to-
face meetings is Colab, which has been created at Xerox Parc [10]. This project
advocates the use of computers in meetings rather than a passive medium like
chalkboards. The idea is that in the meeting room each person has a keyboard
and mouse on his table and there is a very large screen to the front of the room.
Each person may retrieve information from the computer and may easily write and
draw on the screen by using the keyboard and mouse in front of him. In this mode
of working a meeting may be dynamic and interactive, and at the same time all
the text and sketches which have been generated in the meeting are stored in the
computer. The abundance of information is conveniently accessible for analysis
when needed.

4.1.6 Rapid Proto-typing The most obvious technique for testing and im-
proving an expert system is rapid proto-typing. The DE is confronted with the
behaviour of an unfinished version of the system which is modified in the light
of his/her comments. Each iteration brings the behaviour of the system closer
to completion although, since it is often carried out without a clearly defined no-
tion of completion, it is perhaps better thought of as iteration towards adequate
achievement.

4.1.7 Summary of the Techniques These are just some of the techniques
that have been identified as useful. They should be viewed as complementary
rather than mutually exclusive because different techniques may be used to capture
different types of knowledge more effectively. Interviews are important for gaining
an overall view of the domain; concept sorting is appropriate for structuring the
domain; and protocol analysis is particularly helpful when collecting rules. The
main point is that the KE needs to be aware that there are different techniques
which may be applied. Their usefulness also depends very much on the individual
KEs. Factors such as the KE’s knowledge of the problem domain and how well he
gets on with the DE are important.

From the description of different techniques, it should also be clear that feedback
plays a very important role in knowledge elicitation. It is highly unlikely that a DE
can impart all relevant knowledge at one meeting even if the domain is extremely
simple. The question is then: What form of feedback should be provided ? An
obvious but important comment is that what is fed back should be familiar to the
DE so it may easily be understood and commented upon.

130

5 Knowledge Elicitation for ALTSEL

The following sections describe the experiences gained in the knowledge elicitation
process undertaken for ALTSEL. The relevance of the different techniques described
earlier will become evident in these sections.

5.1 Meeting the Experts

The KE contacted a consultancy company which specializes in designing industrial
buildings. Four meetings took place, with each lasting approximately three hours.
The following is a short commentary on what happened during each of these four
meetings.

5.1.1 First Meeting At this meeting the KE met the DE, a design engineer
with many years of experience. The DE knew that he had expertise and was
sceptical that a computer could perform the same function. So, throughout this
meeting, the KE tried to convince the DE by describing to him how expert systems
work and showing him the listing and runs of a simple prototype design checker.
The DE remained unconvinced. He had two basic doubts:

1. How could a computer reason except through obeying instructions?

2. Every design is different; how could a single set of rules apply to all designs?

The KE left the meeting frustrated and discouraged. Nonetheless, they agreed
to have a second meeting two weeks later.

5.1.2 Second Meeting At this meeting, there were three DEs: the previous
design engineer, another design engineer and an expert in computer aided design.
The first part of the meeting was very much the same as the previous one with the
KE trying to convince the DEs that expert system technology was workable.

However, this time the KE had a copy of a diagram with him which illustrated
a abstraction hierarchy of the design of a building. The diagram (figure 2) is a
simplified version of another diagram that the KE had found in the literature.
The original abstraction diagram was developed by Sriram [11] for his work on a
knowledge-based system for designing buildings. He showed this to the DEs who
immediately identified that this reflected how they carried out design. In other
words, the diagram helped the DEs conceptualise their own thinking processes and
relate them to those of an expert system.

Some time later the KE was left with the second design engineer to work through
a design problem that he had recently solved. The DE was quite happy to explain
how he had made certain decisions when he was asked the question “Why ?”. The
DE also pointed out some literature that practising engineers read.

131

=]

Lateral Load Resisting Syst:rJ [Vorﬂcal Load Resistng Sysm‘l

| e el e [e]
e | | sme, | ——
ESNEEN vee

Location location

Figure 2. A simplified abstraction hierarchy of the industrial build-
ing design process after Sriram [11]

Source Number of rules
Design Engineer 35
Literature S3
Other Sources 22

Figure 3. Breakdown of the rules according to their sources

132

From the informal protocol collected the KE was able to produce ten rules.
Further, the KE was able to identify and glean more rules from the literature that
he had read earlier. The KE then built a prototype which took a specification as
input and produced alternative feasible structural systems as output, together with
a recommendation of which of these alternatives was most favourable for further
analysis and detailed design.

5.1.83 Third Meeting This meeting took place a month after the previous one.
When the DE saw the runs and rules of the system, he was very surprised by the
progress that had been made. He spent most of the time in this session commenting
on the rules.

After this session the KE was able to refine his rule-set and try the system on
other problems he had collected from literature.

5.1.4 Fourth Meeting At this meeting the DE introduced three new problems
and described to the KE how he had solved them.

To date, the knowledge-base has over a hundred rules. The table in figure 3
gives a break down of the sources of the rules.

5.1.5 Discussion and Conclusion The most important lessons learnt from
this project concerned the following:

e KE’s familiarity with the domain; and

o KE’s initial approach.

It is concluded that the factor that seemed to play the most important role in
speeding up the knowledge elicitation process was the KE’s familiarity with the
domain. Computer scientists frequently claim to be equally effective knowledge
engineers as one from the domain being considered. A very common opinion is
that any person can be a good knowledge engineer after spending a little time in
a DE’s office. This was not the experience of this project. There were a number
of occasions when the KE helped the DEs articulate their ideas. The only factor
which seemed to help the KE in doing so was his familiarity with the domain. That
sort of familiarity may not be acquired during a one week visit to an consultant’s
office.

Another useful feature which seemed to help the whole process was the abstrac-
tion hierarchy of the design process. Although a KE might not always be able to
generate a relevant diagram by himself, he should be able to produce one with the
assistance of the DE. The concept sorting procedure (described in section 4.1.4)
is a good bottom-up technique to use. During the knowledge elicitation phase
diagrams can form a useful part of the documentation for the system.

133

Protocol analysis, or more precisely, studying case histories, was found to be
a very useful way of generating rules. However, it is interesting to note that only
a third of the rules were elicited directly from the DE (see figure 3). Following
through the information provided by the DE, looking for further or more detailed
information yielded much.

The KE found that decomposing the problem, especially the preliminary design
part, into sub-problems, at an early stage, was an extremely important step in
formalising the domain knowledge. Once the problem was decomposed it not only
helped the DE to recall and provide the relevant pieces of information but it also
helped the KE to pick out relevant material from other sources. From the system
construction point of view, it was also very helpful because the knowledge base
could then be divided into smaller modules making them easier to maintain.

The DE was surprised and impressed by the result of proto-typing. It is cer-
tainly a very useful way of obtaining feedback from the DE. In this case it was
disappointing that the DE could not see the prototype running but could only
comment on the output of the program.

When using proto-typing as a technique to obtain feedback, the KE found it
necessary to guard against letting the documentation slip. It is easy to get into
the habit of making quick changes to the system without keeping a record of the
changes made, thus making the system difficult to modify and maintain in the
future.

At the time, it seemed quite obvious to approach the DEs by first convincing
them about the potential of knowledge-based expert systems. As pointed out
earlier, quite a number of hours were wasted in doing so. The lesson thus learnt
was that an attempt should be made to collect information from the DEs without
making overstated claims about the proposed system. It now seems important to
stress the fact that the proposed system is only intended to assist the DEs and not
to replace them. It seems important to reassure the designer of his supreme role
in the design process in relation to any computer program. This point certainly
appears to be a very important one.

5.1.6 Knowledge Representation - Introduction The knowledge represen-
tation formalism used in ALTSEL is the same as that for INDEX; namely produc-
tion rules. The knowledge-base of ALTSEL is organised into different sub-modules
as shown in figure 4. ALTSEL itself is at the Specialist level of INDEX and thus,
almost all the knowledge contained in ALTSEL is heuristic and is obtained from
either experts or the domain literature. The purpose of ALTSEL is as follows:

e selection of the feasible alternative structural systems;

e carrying out a preliminary analysis of the structural systems;

134

Blackboard

PREVALUATOR

PREANA

PREDES

Figure 4. The sub-modules of ALTSEL

135

e carrying out a preliminary sizing and proportioning of the components of the
systems;

e carrying out preliminary checks on the components;

e posting relevant constraints for each of the alternative system to the black-
board for a later use by the other modules; and

e carrying out a preliminary evaluation of the systems.

Section 5.1.8 describes the different knowledge modules of ALTSEL that per-
form these tasks.

5.1.7 Types of Constraints The identification and proper use of various con-
straints constitutes one of the most important aspect of any design. The different
types of constraints considered by different knowledge modules of ALTSEL depend
upon the task being performed. The constraints considered by the sub-modules
of the ALTSEL module are mostly external. For a comprehensive description of
different types of constraints in structural design, reference can be made to [11].
External constraints are the constraints which are not in the control of the designer.
In other words, these constraints are external to the designer. These constraints
are mostly governed by the requirements of the client.

In order to take the decisions listed above, various decisive factors must be
determined first. On the basis of discussions with practising engineers and a study
of the design literature used by them to assist in taking these decisions, it was
concluded that the following parameters played the most decisive roles in the pre-
liminary design of industrial buildings:

® span;

e loads;

allowable pitch;

intended industrial process to be carried out in the building; and

any other client-related constraints.

Thus, all the rules in ALTSEL have one or more of the above-mentioned param-
eters as constraints to be satisfied. The constraints considered by the SYNTHESIS
sub-module in deciding (about the) feasible lateral load resisting systems are shown
in figure 5. Figure 6 shows the considerations used by the PREVALUATOR sub-
module in evaluating different feasible systems.

136

Load Resisting System

span toad pitch intended use
of the building

type magnitude process to be further expansion
carried out plans
headroom requirements grid plan

(internal columns
allowed or not)

Figure 5. Constraints considered by SYNTHESIS

Structural system

cost speed weight deflection ease of usable Industrial aesthetics
maintenance space process
compa tibility

Figure 6. Evaluation characteristics considered by PREVALUATOR

137

5.1.8 Sub-modules of ALTSEL

SYNTHESIS - This module is responsible for selecting the a feasible structural
systems for the building in question. A typical rule from this module is as follows:

if [problem, span(X) ,truel

and [problem, int_stanchion(no) ,true]

and holds X > 60

then true

to add[lateral_load_sys,single_span_portal,truel
est synthesis(1).

This rule is in the Edinburgh Prolog Blackboard Shell syntax and states that
if the span of the building is more than sixty metres and that there are no internal
columns allowed in the building then one alternative for feasible lateral load system
is the single span portal frame. The different parts of the rule are explained in
section 2. However, the value of est in this rule is different from the default provided
by the shell. This will be explained later in the section 6.2.

In addition to selecting the feasible alternative structural systems, SYNTHESIS

also decides on the frame spacing, appropriate systems for the roof, the sides and
their claddings.
PREANA - This module is responsible for undertaking the preliminary analysis
of the alternative systems generated by SYNTHESIS. The rules in this sub-module
are mostly analysis formulae for different types of structural systems. Also included
in this sub-module are rules to decide what type of analysis should be undertaken.
For example, it carries out a plastic analysis for a portal frame whereas for a truss
it can only undertake a routine elastic analysis. There follows a typical rule from
this sub-module which applies to single span portal frames of fixed bases:

if [synthesis,lateral_load_sys(single_span_portal),true]

and [problem,bases(fixed) , truel

and [problem, span(L) ,true]

and [problem, load (W) ,true]

and [problem,eaves_ht(H1),true]

and [problem,pitch(Y),true]

then moment1 (H2, ((L/2)*tan(Y)),X, ((H1/(H1+H2))*(W*L"2)/16))
to add[preana,sspfb_pla_mom(X) ,true]

est preana(1).

The successful execution of this rule will add an entry on the blackboard under
the index preana . This entry will be the value of the plastic moment for the single

138

span portal frame alternative. The actual moment is calculated by the PRO-
LOG clause momenti(H2, ((L/2)*tan(Y)),X, ((H1/(H1+H2))*(WxL~2)/16)) in
the consequent part (i.e. the ‘then’ part) of the rule.

PREDES - is responsible for carrying out the sizing of the different members
of the alternative structural systems generated by SYNTHESIS the preliminary
analysis of which is already carried out by PREANA. The following is a rule from
this module:

if [preana,ssp_pla_mod(X),true]

and [problem,ssp_rafters_sec_ext_cons(no),true]
and [problem, ssp_stanchion_sec_ext_cons (no) ,true]
then get_section(X,A,Y)

to add[single_span_portal,ssp_feas_sec (A),true]

and(single_span_portal,ssp_zp_provided(Y),truel

and[single_span_portal,ssp_rafters_sec(ub),truel

and(single_span_portal,ssp_stanchion_sec(ub),true]
est predes(3).

This rule determines the feasible section from a database of Universal Beam and

Column sections given the plastic modulus of the portal frame. It is also stated
that there are no external constraints on the dimensions of either the stanchions
or the rafters. Both the stanchions and the rafters are assumed to be of the same
uniform section.
ECONOMICS - this sub-module is based fully on heuristic rules obtained from
the results of a research project on the comparative costs of single-storey steel
structures [12]. The firing of the rules in this sub-module depends on the presence
of a particular type of lateral load system on the blackboard. The following rule
illustrates this and also illustrates the type of knowledge contained in the sub-
module:

if [problem,span(X),true]

and [synthesis,lateral_load_sys(roof_truss),true]

and [problem,pitch(Y),truel

and holds((13.3 =< X,X =< 26.7,Y > 0.3))

then true

to add [economics, lateral_load_sys_eco(roof_truss),true]
est eco(1).

The rule simply states that if a roof truss is one of the feasible systems, that
the span is between 13.3 and 26 metres and the pitch of the roof is greater than
0.3 radians then roof truss will be the most economical structural system.
DESIGN - this sub-module’s purpose is not directly concerned with the prelim-
inary design stage. However, it has a very important purpose to serve for the

139

design process as a whole. The sub-module determines any relevant constraints
which should be satisfied in the detailed design stage of any alternative structural
system. The reason for keeping this sub-module in the ALTSEL module is that the
knowledge contained in the sub-module is related to the feasible structural systems
generated by SYNTHESIS. Also, all the constraints to be satisfied in the design of
any structural system should be propagated to the other modules the moment a
particular structural system is found to be feasible by SYNTHESIS. In some ways
DESIGN may be regarded as a meta-module, i.e., a module which operates above
all the other modules. The following is a typical rule from this module:

if [synthesis,lateral_load_sys(single_span_portal),true]

and [problem, span(Y),true]

and holds(Y > 10)

then output_message('The following things should be considered
in the detailed design stage of single span portal
alternative :-

1. pitch should be kept low because greater slope
will give rise to greater spread at knees which
may cause problems with cladding,

2. horizontal thrusts should be carefully examined
and the foundation designed accordingly,

3. haunch should be provided at the eaves and the
ridge should be deepened because the maximum
bending moment will occur at the knees.')

to add[design,design_cons (single_span_portal),true]
est des(3).

The rule applies to the constraints for the single span portal frame alternative.

PREVALUATOR - This sub-module is responsible for carrying out a relative
evaluation of the different feasible structural systems generated by SYNTHESIS.
The different criteria considered by PREVALUATOR are given in figure 6. They
are given different weights as suggested by various practising engineers and a final
value is given to each alternative structure. The best structure is the one with
lowest value. This sub-module could not be fully developed owing to problems in
quantifying subjective considerations such as aesthetics.

140

§ingle-span portal multi-bay portal tled portal

internal columns

Figure 7. Inference Network for lateral load resisting frames

5.2 Problem-solving Methods Used

All the problem-solving strategies in Knowledge-Based Systems Technology adopt
one of the following two approaches [13]:

e Formation approach or

e Derivation approach.

The formation approach as the name implies involves the formation of the most
appropriate solution. This is achieved by putting together the different components
of a complete solution stored in the knowledge-base at different levels. In contrast,
the derivation approach involves selecting the most appropriate solution from a set
of pre-defined solutions stored in the knowledge-base.

It is evident that the formation approach is probably the more general and
intelligent way of solving a problem. However, for the domain we are working in,
we found that the derivation approach provided an easier way of finding solutions.
This was discovered after experimenting with the formation approach. So, ALTSEL
utilises the derivation approach to solving the problem, in contrast to HI-RISE
which uses a formation approach [13]. Figure 7 is an inference network for the
selection of feasible lateral load systems. The knowledge-bases of ALTSEL consist
of different feasible solutions for various situations. In doing so, it proceeds by
handling different constraints [14], consisting of the following :

e constraint formulation,

141

uods uods vods
[ERal"] 3\6uis 1Nu uods 3)\6uls

SULUMOD 321330 suunjod ajduis
WDa PAIONILSVI yoag Payo)a3SOd

uods uods
[ERTAN] a16uis
1ubn
uods uods vods uods uods uods A134313ng -U3JOU Y300} MDS D))3dgun
1Ny 316urs Ny 316uis 131Ny 3)6uis <
uoIyoUDLYS
< /\ MUNS sargou yousasu mLm_?._cowu_:c_

SUWNOD SUWNOD SUWN|OD uo sJayjod 6uihad0d sassnuy Bunis
331330} ajduis 32111 0) SUWUN0D paxuoud swoaq A3NoA
woaq woaq woaqg puD WYaq suwnjod ajduis O S3MeS puo abpis y0340d a\duls
331310] 321330] adwis P330V)S1SVI woaq aduis
vods vods
uods vods inu 316uis

p3i} pJOsSuow paddoud 13NV 316uis /\

SUWN|0D PasSShJ} suwn0d 3duis
ssnu} Jood s5NnJ4} Joou

/\

SUWN|0D PUY Wo3aq sawouy)oyuod SUWN)OD PUD SSNJY

p146

tems

ing sys

h space for feasible lateral load

lon searc

Figure 8. Solut

142

Grid plan
trusmtm frames heam and calumns

| - |
preliginary analysis preliminary analysis preliminary analysis
)
prdliminary sizing preliminary sizing preliminary sizing

i
prelw@nory evaluation preliminary evaluation preliminary evaluation

Figure 9. Problem-solving sequence adopted by ALTSEL

e constraint satisfaction and

e constraint posting.

The concept of constraint handling is accomplished in the system by first satis-
fying the constraint for a particular alternative; then by looking for any constraint
associated with the alternative which will be used by other modules (i.e., constraint
formulation); and finally by posting it to the appropriate module which uses it
later (i.e, constraint posting). The constraint satisfaction operation is carried out
by all the sub-modules. The constraint formulation is undertaken by the DESIGN
sub-module; as discussed in section 5.1.8. The constraint posting is also accom-
plished by the DESIGN sub-module but the way it works is by actually exploiting
an inherent feature of communication between different knowledge sources of the
blackboard architecture. This is an example of an important use of the blackboard.
The following rules (one from the SYNTHESIS, one from the DESIGN and one
from the standards processing sub-module, STAPRO) will illustrate this feature.

if [problem, span(X) ,true]
and [problem,int_stanch(no),true]
and holds(X =< 60)

then output_message(’A single span portal would be feasible.’)
to add[synthesis,lateral_load_sys(single_span_portal),truel
est synthesis(5).

if [synthesis,lateral_load_sys(single_span_portal),true]
then true
to add[design,single_span_portal(elastic_defl_check),true]

143

est design(12).

if [synthesis,lateral_load_sys(single_span_portal),true]

and [design,single_span_portal(elastic_defl_check),true]

then check_clause(sec. 5.1.2.3)

to add[conformance(portal _frame,5.1.2.3,deflection),
satisfied,true]

est design_check(12).

where check_clause is a PROLOG procedure which checks the provisions of sec-
tion 5.1.2.3 of BS5950.

In this example, the constraint has been posted to the blackboard with the
index ’design’ by the DESIGN sub-module. It may be accessed by any other
module using this index. For example, the last rule from the standard provision
checking module states that, if there is an entry on the blackboard which stipulates
that the deflection should be checked by elastic methods, then the provisions of
clause 5.1.2.3 of the standard must be satisfied. It is evident that giving appropriate
indexes to different entries, allows for partitioning of the blackboard, which may
be further used in formulating and propagating constraints to other modules.

5.3 Explanation facilities

Some explanation facilities have also been incorporated in ALTSEL. Two ap-
proaches have been investigated, one using an associated explanation for every
conclusion produced; and the other using the front-end facilities of the shell to
generate explanations.

The explanations one may obtain from the system are :

e the rule or set of rules which forced a particular conclusion;
e the current entries on the blackboard;

the reasons for reaching a particular conclusion;

the set of rules which were successful at the end of a session; and

the details of any alternative feasible solutions generated by the system.

6 Implementation

6.1 General Description

The sequence of execution of the different knowledge-modules of INDEX is as
follows :

144

(ALTSEL->STRANEX->DETDEX->0PTEX->EVALUATOR)

Each of these modules consists of different sub-modules. The sequence of exe-
cution of the sub-modules of ALTSEL is as follows :

(SYNTHESIS->PREANA->PREDES->ECONOMICS->DESIGN->PREVALUATOR)

The ALTSEL sub-modules are shown in figure 4. Based on the rules in these
sub-modules, the system is able to select the feasible alternatives for the lateral
load resisting systems for the industrial building in question.

The current version of the ALTSEL module incorporates over one hundred
rules. Although some of the rules are based on discussions with working design
engineers, most of them are taken from the published literature of steel section and
frame manufacturing and fabricating organisations such as the Steel Construction
Institute (formerly known as the Constructional Steel Research and Development
Organisation).

The system is implemented on a Sun 3/50 workstation. The system has knowl-
edge of the following types of steel frames :

e portal frames;
e roof trusses and columns; and

e beams and columns.

Apart from these, it also has rules for incorporating gantries for the design of
gantry cranes if required. The solution search space for the feasible lateral load
resisting systems is shown in figure 8. The search strategy adopted is the breadth-
first search. The system generates all the solutions at one level before going on to
the next level. Figure 9 illustrates the search procedure adopted by the ALTSEL
module. One drawback with this approach has been the lack of transparency of
the system. The user does not receive complete details of a particular alternative
at a glance. To overcome this drawback, the user is given the facility of obtaining
complete details of any alternative solution generated by ALTSEL at the end of
the session using the show_details_of command.

6.2 Control Mechanism

The Edinburgh Prolog Blackboard shell (described in section 2) was used for the
implementation so that the control mechanism was already built into the shell. It
consists mainly of an agenda, dynamically built during the consultation process.
The agenda sequences the firing of the rules inside a knowledge module.

As already mentioned in section 2, ‘est’ in the rules indicate the ‘usefulness’ of
each rule and, thus, helps in building up the agenda. So, by giving appropriate ‘est’

145

values to the different rules, we may sequence the firing of these rules. The rule with
the lowest ‘est’ value will be fired first, the rule with the next higher ‘est’ value after
that and so on. This is the default methodology for conflict-resolution provided by
the shell using numerical values for ‘est’. However, the conflict-resolution strategy
adopted in INDEX bypasses this approach and a new strategy was defined that
suited the requirements of INDEX.

To accomplish this, the default method was to give simple numerical values to
‘est’ starting from the first rule of SYNTHESIS and incremented up to the last
rule of PREVALUATOR. This was not an elegant way of approaching the problem
for the simple reason that if a rule was added to any of the modules at a later
stage, all the ‘est’ values have to be changed for all the rules following it. Another
reason was that the whole idea of modularity would get lost by this approach and
the set of rules, in effect, would become one module instead of being broken down
into sub-modules.

The second approach was to give symbolic ‘est’ values to the rules of the different
sub-modules. These symbolic names were specific to the rules of that sub-module
only and define a different conflict-resolution strategy altogether. In this approach,
the sequence of execution of the sub-modules had to be first defined and then the
sequence of firing the rules inside each sub-module. The rules quoted earlier in
this chapter have symbolic ‘est’ based on this approach. This approach avoids the
problems of the default approach described above. To recap, the following is an
example of a rule from the SYNTHESIS sub-module using this approach:

if [problem,span(X),true]
and holds (X =< 60)
then output_message(’Single span portal frame is a

feasible alternative’)
to add[synthesis,lateral_load_sys(single_span_portal),true]
est synthesis(5).

The ‘est’ value of this rule indicates that this rule is the fifth rule inside the
SYNTHESIS sub-module. The numerical value in this ‘est’ decides the firing of
the rule inside that sub-module. Invocation of the sub-modules is decided by the
top level conflict-resolution. It is worthwhile pointing out that this operation of
sequencing the firing of the rules as well as the knowledge modules according to
the demands of the domain was made simpler by using the Edinburgh Prolog
Blackboard Shell.

7 Summary
The concepts involved in the development of ALTSEL, the preliminary design mod-

ule of INDEX, were outlined. The knowledge elicitation as well as knowledge repre-
sentation aspects of the development of ALTSEL’s knowledge base were described

146

in detail. Some implementation issues were highlighted with examples of some
representative production rules. A description of the control mechanism suitable
for the domain of this project was also given underlining the ease of accomplishing
this using an expert system shell.

8 Conclusions

The following conclusions were drawn from the development of ALTSEL:

o Artificial Intelligence tools and techniques provide a way of incorporating
rules of thumb and heuristics into computer-aided design of structures.

e Protocol Analysis was found to be a useful knowledge elicitation technique
in the domain of design.

e The blackboard architecture provided a flexible environment for the prop-
agation of constraints between the different knowledge modules so vital for
design.

e The development of a fully-working system requires many different types of
knowledge. Mere heuristics are not sufficient to solve real-life problems in
structural design. The system needs to have numerical as well as logical
capabilities.

¢ Since a considerable number of decisions in the preliminary design stage are
taken using heuristics, a system similar to the one described in this paper
might perform satisfactorily in that domain. But, for the domain of de-
tailed design, the system needs to have more capabilities, e.g., logical and
mathematical inferencing from fundamental laws of structural engineering or
general knowledge of arithmetic.

References

[1] Topping, B.H.V., Kumar, B., “A Knowledge-Based Model for Structural
Design”, in this volume, Optimization and Decision Support Systems in Civil
Engineering, Kluwer Academic Publishers, 1992.

[2] Topping, B.H.V., Kumar, B., “INDEX: An Industrial Building Design
Expert”, Journal of Civil Engineering Systems, v.5, 65-76, 1988.

(3] Chan, N., Johnson, K., “Edinburgh Blackboard Shell User’s Manual”,
Artificial Intelligence Applications Institute, University of Edinburgh, 1987.

4]

(5]

6]
[7]
(8]
(9]

[10]

[11]

(12]

[13]

[14]

147

Welbank, M.A., “A Review of Knowledge Acquisition Techniques for Expert
Systems”, British Telecom Research, Martlesham Heath, 1983.

Gammack, J.G., Young, R.M., “Psychology Techniques for Eliciting Expert
Knowledge”, In Research and Development in Expert Systems, Bramer,
M.A. (Ed.)., Cambridge University Press, 1985.

Bloomfield, B.P., “Capturing Expertise by Rule Induction”, The Knowledge
Engineering Review, Vol 1, No. 4, 1986.

Regan, J.E., “A Technique for Eliciting Categorical Knowledge for an Expert
System”, Paper submitted to AAAI-87, 1987.

Hayes-Roth, F., Waterman, D.A. and Lenat, D.B. (Eds.), “Building Expert
Systems”, Addison Wesley, 1983.

Mittal, S., Dym, C.L., “Knowledge acquisition from Multiple Experts”, Al
Magazine, 32-36, Summer 1985.

Stefik, M., Foster, G., Bobrow, D.G., Kahn, K.M., Lanning, S.,Suchman,
L.A., “Beyond the Chalkboard: Using Computers to Support Collaboration
and Problem Solving in Meetings”, Paper submitted to CACM, 1986.

Sriram,D., “Knowledge-Based Approaches to Structural Design”, Ph.D.
Dissertation, Department of Civil Engineering, Carnegie-Mellon University,
U.S.A., 1986.

Horridge, J.F., Morris, L.J., “Comparative Costs of Single storey Steel
Framed Structures”, The Structural Engineer, Vol. 64A, No. 7, 177-181,
1986.

Maher, M.L., ”Problem-Solving Using Expert System Techniques”, in
Expert Systems in Civil Engineering, Eds., Kostem,C.L., Maher, M.L.,
ASCE, New York, 7-17, 1986.

Stefik, M., “Planning with Constraints - MOLGEN Part 1”, Artificial
Intelligence, No. 16, 111-140, 1981.

A Prototype Environment for Integrated
Design and Construction Planning of Buildings

S. J. Fenves, U. Flemming,

C. T. Hendrickson, M. L. Maher, and
G. Schmitt

Department of Civil Engineering

Carnegie Mellon University

Pittsburgh

United States of America

Abstract The dispersed nature of the construction industry raises communication issues
that are exacerbated by the increased use of computer programs. Integration of the various
disciplines and computer programs requires more than the transfer of geometric data. This
paper presents an integrated computer environment in which knowledge-based systems
communicate through a blackboard and a central, global database representing the design
solution.

1 Introduction

The building construction industry is characterized by a dispersed organizational
structure in which a number of diverse organizations participate in the planning,
design and construction of each building project. Presently, the major media for
communicating large volumes of information between the participants are draw-
ings and written specifications. As increasing portions of the design-construction
process become computer-based, the need for appropriate forms of electronic com-
munication becomes increasingly apparent. Furthermore, as computer use shifts
from purely numeric calculations towards symbolic and knowledge-based reasoning,
there is additional need to communicate functional as well as geometric informa-
tion.

The dispersed nature of the construction industry raises further communication
issues. On the one hand, there is no pool of common knowledge: since architects
and structural engineers only perform design, they do not possess first-hand knowl-
edge of what constitutes a constructable design. On the other hand, there is no

149

B.H.V.Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 149-165.
© 1992 Kluwer Academic Publishers.

150

direct way for constructors to provide feedback to designers on what changes in the
design may improve constructibility and reduce cost. These issues indicate that
communication between the dispersed organizations needs to be extended beyond
the current exchange of data and that it is not clear what these extensions should
be.

The prototype integrated environment described in this paper is intended to
serve as a testbed for examining these communication issues. The integrated envi-
ronment addresses the vertical integration of architectural design, structural design
and construction planning of speculative high-rise office buildings. Attention is pri-
marily focused on two aspects: (1) representation and communication of the project
information as the project progresses; and (2) control and feedback in the overall
process. The environment makes use of a number of Artificial Intelligence tech-
niques. The processes are implemented as Knowledge Based Expert Systems. A
Blackboard Architecture is used to coordinate communication between processes.

As the Integrated Building Design Environment (IBDE) is intended to serve as
a testbed for exploring integration issues, it is an evolving system. In this paper
we present IBDE in its initial, current, and future states, addressing the issues
associated with its evolution. This paper begins with a description of the initial
architecture of the integrated environment and its knowledge-based processes. The
extension of the processes beyond their original ‘forward pass’ mode to provide
and respond to criticism is discussed next. The evolution of the representation
of project information from flat files to a global database with derived views is
presented. The control issues are addressed and the current and future states of
the implementation are described. The paper concludes with a summary of the
major issues addressed.

2 Architecture and Processes

2.1 Architecture

The Integrated Building Design Environment (IBDE) integrates seven individual
processes using a blackboard approach. The architecture of the initial system is
illustrated in Figure 1. The status blackboard records the status of the processes.
The controller is responsible for activating the processes and communicating project
information to the processes. The datastore manager is responsible for retrieving,
storing, and translating data for individual processes. The project datastore records
the global representation of the project information. The common user interface is
a graphical and textual display of the project information and the current status
of the processes. The communication and control mechanisms are treated in detail
in the succeeding sections.

The processes in IBDE include architectural planning, structural design, and

STATUS
BLACKBOARD

ARCHPLAN

STRYPES

STANLAY

CONTROLLER

DATA STORE MANAGER

TRANSLATORS

DATA

TRANSFER
MANAGER

PROJECT
DATASTORE

COMMON
DISPLAY
INTERFACE

Figure 1. Initial architecture of IBDE.

151

152

construction planning. These processes are not typical of computer programs cur-
rently used in design and construction of buildings, but they accentuate some of the
communication issues addressed in the project. Some of the processes existed be-
fore IBDE was developed, while others were developed in the context of IBDE. All
processes are implemented as knowledge-based systems to permit rapid develop-
ment and modification. The implementation of IBDE in a commercial environment
would necessarily also include a number of conventional programs. The knowledge
based processes are:

e ARCHPLAN: an interactive system for the development of the design con-
cept;

e CORE: a space planner for the service core;

o STRYPES: a structural system configurer;

e STANLAY: a layout and approximate analysis system;
e SPEX: a structural component designer;

¢ FOOTER: a foundation designer; and

e CONSTRUCTION PLANEX: a construction planner, estimator and sched-
uler.

2.2 The Processes

Each of the processes comprising IBDE is briefly described below.

ARCHPLAN (7] is a knowledge-based ARCHitectural PLANning expert sys-
tem for the interactive development of a design concept. Input to ARCHPLAN
describes the given site, program, budget, and geometric constraints. The out-
put provides three-dimensional information about the building’s overall shape, the
distribution of functions, and the circulation system. The program starts with a
generic prototype of an office building, which is then refined by the user in in-
teraction with the program and heuristic knowledge built into the program. This
interaction takes place in three distinct, but interrelated decision modules. The
Site, cost, and massing module (SCM) develops a massing model that will fit the
given site and budget and a range of other parameters. Cost, site and massing op-
tions are treated as inter-dependent concerns. Conflicts are resolved based on the
Function module. This module assists in determining the vertical and horizontal
distribution of functions (office, retail, atrium, mechanical systems and parking)
within the volume established by the previous module. The module proposes a
three-dimensional layout scheme and presents it as solid or wire frame display. If

153

conflicts occur with input data or earlier decisions, the program backtracks to the
SCM module. The circulation module generates circulation proposals based on
combinations of internal or external vertical circulation elements.

CORE generates layouts of the elements in the service core of the building
(elevators, elevator lobbies, restrooms, emergency stairs, utility rooms etc.). The
input to CORE includes the overall geometry of the building and the expected size
and location of the service core. CORE’s output includes the number of elevator
banks, the number and speed of the cars in each bank, the floors served by each
bank and the layout of cars, banks, and other elements. CORE is an adaptation
of LOOS, [2] a general system for the generation of layouts that can be adapted
to various domains. LOOS places particular emphasis on the generation of layout
alternatives with interesting trade-offs.

STRYPES is a knowledge-based expert system that configures a structural
system. It is based on the knowledge acquired through the development of HI-
RISE [5]. STRYPES is implemented in EDESYN [6], an expert system shell for
engineering design synthesis. The input to STRYPES includes: (1) the structural
grid produced by ARCHPLAN, specifying potential locations for structural sys-
tems; (2) functional information about the building, such as intended occupancy
and location and size of the service core; and (3) load information. The output of
STRYPES specifies the types and materials for the lateral load system and verti-
cal and horizontal gravity load systems. STRYPES considers frame or shear wall
vertical systems and slab, steel deck, or prefabricated panel horizontal systems.

STANLAY, also developed using EDESYN, performs two major tasks for the
preliminary structural design of the building. The first task is the layout of the
structural systems specified by STRYPES, the second is an approximate analysis
of the structural system. The input to STANLAY includes: (1) the structural
grid; (2) the architectural function of the building; and (3) the structural systems
selected by STRYPES. The output of STANLAY is the location of the lateral
and gravity load systems and the load distribution and grouping of the structural
components. The layout involves identifying several possible locations of the lateral
load system and specifying the location of the gravity load system. The location of
the lateral load systems requires the specification of 2D vertical subsystems, such
as rigid frames or shear walls, and their location on the grid.

SPEX (3] performs the preliminary design of components for the structural
system specified by STANLAY. In the IBDE implementation, SPEX receives as
input the design parameters for each component group: (1) type of component
(e.g., beam, column); (2) length; (3) material (steel or concrete); and (4) estimated
loads. The SPEX interface supplies the material grade, the name of the design
standard, the design focus, and an optimality criterion. The output of SPEX is
the description of the optimal component. It implements a design strategy in
which components are designed by applying three types of knowledge: knowledge
contained in design standards; ‘textbook’ knowledge of structural, material and

154

geometric relationships; and designer-dependent design expertise.

FOOTER is an expert system that performs a preliminary design of the foun-
dation of a building; it is also implemented in EDESYN. The input to FOOTER
includes: (1) soil conditions, such as the presence of obstruction, location of water
table, depth of bedrock, and soil classification; and (2) imposed load conditions
from the structure provided by STANLAY. The output of FOOTER is a descrip-
tion of a footing or pile for each column and/or shear wall. The foundation design
problem is decomposed into: selection of foundation type; material type; casting
type; excavation method; and parametric design of the foundation components.

CONSTRUCTION PLANEX [4] is a knowledge-based expert system to assist
the construction planner. The input to PLANEX consists of: (1) specifications
of the physical elements of the structure provided by other processes; (2) site in-
formation (such as soil type and elevations); and (3) resource availability (such as
number of crews or equipment types). The output from PLANEX consists of a
complete plan of construction activities including a provisional schedule and cost
estimates. The system suggests technologies; generates necessary activities and
precedences; estimates durations and required resources; and develops a construc-
tion schedule. The system will either generate a construction plan automatically
or a planner can review and modify decisions during the planning process.

2.3 Evolution of Processes

The processes in IBDE are being extended to generate and react to criticism and
feedback in the design process. The initial version of IBDE operates automatically
in the ‘forward pass’ mode, where the controller activates the processes in a linear,
sequential fashion. The addition of CORE introduced some parallel processing,
where STRYPES and CORE could be running simultaneously. The addition of
CORE also introduced potential conflicts because the service area set aside by
ARCHPLAN could be determined to be inadequate by CORE, thus invalidating
the design produced by STRYPES and STANLAY. Similar conflicts could arise at
any point in the design and construction planning process. Furthermore, a ‘down-
stream’ process may provide feedback on ways that the design could be improved.
The introduction of criticism and feedback in IBDE begins to address and identify
potential conflicts.

The strategy of adding design critics in IBDE first takes advantage of the pro-
cesses that already contribute to the project. Each process is being extended to
include a process activator and a process critic, as illustrated in Figure 2.

The process critic posts one or more constraints on the message blackboard if
the process was unable to produce a valid solution or if it can suggest possible
improvements. The process activator serves two purposes:

1. Produce criticism by checking the input data for scope; if the input includes

STATUS
BLACKBOARD

MESSAGE
BLACKBOARD

- »

CONSTRANT

CONSTRANT

PROCESSES
imor ARCHPLAN 17 ‘::'m“
Process STRYPES Process
Activator Critic
i':i:::?or STANLAY i::rz:::;s °
Aotvator o s T
AZﬁ?:;r ad SPEX N ?33?5
Acivaror [¥ FOOTER e
Koator [PLANBX [af s]
DESIGN CRITICS

DATA STORE MANAGER

DATA
TRANSLATORS

DATA
TRANSFER
MANAGER

Figure 2. Extended architecture of IBDE.

PROJECT

DATASTORE

COMMON
DISPLAY
INTERFACE

155

156

design decisions that fall outside the capability of the process a constraint is
posted on the blackboard and the process is not activated.

2. React to criticism by adding a constraint for consideration by the process;
when the process is run again, the constraint ensures that the same conflict
does not arise.

These two extensions allow criticism and feedback from the individual pro-
cesses to be communicated to the controller in the form of constraints. Thus far
these extensions appear to be easily incorporated into the original knowledge based
processes.

Specialized design critics are also planned to be included in IBDE. These critics
are intended to provide criticism on design decisions using knowledge external
to the original knowledge base that produced the decisions. A critic currently
under development is a structural analysis critic that will execute a formal analysis
using the results of SPEX and check for consistency with STANLAY’s approximate
analysis.

3 Global Representation

The project datastore holds the global representation of the building and serves as
the repository of data communicated between the IBDE processes.

3.1 Objectives

The design and subsequent evolution of the datastore was dictated by four consid-
erations.

Provision of process views. The primary function of the datastore is to provide
individual views or sub-schemas to the processes through which each process re-
ceives its needed input, without regard of where it was generated, and transmits its
output, again without regard of where it may be subsequently used. These views
need to be sufficiently flexible so that changes in the processes’ data needs can be
readily accommodated.

Flexibility of global schema implementation. In contrast to the process views,
which must be highly responsive to the processes’ functional needs, the global
schema —known only to the datastore manager—can have an evolution of its
own. As discussed below, we have successfully migrated from a tabular, flat file
organization to a relational DBMS organization.

Explicit representation of important conceptual relations. In a static environ-
ment, the datastore need not contain more than the union of the processes’ input
and output requirements; all other data may reside inside the processes, following

157

the principles of information hiding and data encapsulation. Expecting a dynam-
ically evolving environment, it was decided to include in the datastore the im-
portant conceptual relations and abstractions to facilitate the subsequent addition
of new processes and critics. Thus, for example, the objects representing struc-
tural functions and frames are presently used only by STRYPES and STANLAY;
their successor processes (SPEX, FOOTER and PLANEX) deal only with individ-
ual building elements, such as beams or columns. Nevertheless, these high-level
objects are included in the datastore for subsequent use.

Support for common display interface. The visualization of an object as com-
plex as a building requires the display of a great variety of information. Rather
than delegating this display to the individual processes, a single common display
interface was desired, which could display all the information in the datastore in a
variety of formats.

3.2 Overall Organization

The datastore is hierarchically organized as a tree of related objects. Objects may
represent very high-level abstractions, such as the entire building, or very detailed
information, such as individual building elements. The hierarchy primarily repre-
sents part-of relations, where each object is a part or component of a higher-level
parent object. Provisions are also made for representing is-alternative relations,
where an object is an alternate design solution of the parent object. Through this
latter relation, redesign in response to critiques received is readily supported.

As discussed above, this overall organization is independent of the internal
global schema implementation. Figure 3 shows the hierarchical organization among
the major object classes in the current (relational DBMS) implementation. With
this organization, each process can view the contents of the datastore relevant to
it, but not of the segments relevant to the other processes. This organization has
supported the concurrent development of the processes and provides complete data
and process independence among the processes. The datastore provides at any time
a complete snapshot of the current state of the building design and construction
planning process.

3.3 Communication with Processes

Communication with the processes is the responsibility of the datastore manager.

The datastore manager works in concert with the controller and is responsible
for supplying the input data to the processes and retrieving their output data.
Prior to initiating a process by the controller, the datastore manager transfers
the input data to the machine on which that process resides. When a process
terminates, it leaves its output on its own machine; when its termination message
is received, the controller causes the datastore manager to retrieve the data from

158

Project-Context

Y

soil site location

v

building

v

structural-grid

v

Yy Yy A4

space structural-alter project

! !

lateral-str- gravity-str-

foundation project-act.
func func

core-elem

!

frame

v

component

Figure 3. Organization of project datastore.

159

the processes’ machine and merge it into the datastore.

The datastore manager is responsible for generating the views or subschemas
as needed by the processes, including all format and structural conversions. The
datastore manager is further responsible for maintaining an ‘audit trail’ in the sense
of maintaining two descriptions for each object class: placed-by: the name of the
process which provides the value(s) of its attributes(s); and (2) used-by: the names
of the processes which use these values. Using this information, the controller can
route any critique of a particular object to the process that was responsible for
creating the object’s attribute values.

3.4 Implementations

The local views of all of the processes consist of sets of objects with attributes in
the respective implementation languages of the processes. Furthermore, in most
processes, no explicit distinction is made between input and output attributes; the
object contains all necessary attributes.

In the initial implementation, data is communicated between the processes by
means of files. Each file contains all the instances of a particular object type (e.g.,
beams or columns). There is a one-to-one correspondence between the objects in
the files and the individual process objects, although there are differences in format
and attribute names. The datastore manager is responsible for format and name
translation and for transferring the appropriate files to and from the processes.

As an illustration, Figure 4 shows the ‘snapshot’ of a BEAM object before
PLANEX has supplied values for the last seven attributes.

In the current implementation, the datastore manager maintains the global
representation in the form of a global database schema implemented as a set of
relations. The schema closely resembles the conceptual hierarchical tree represen-
tation and relies extensively on two types of relations: (1) ‘data’ relations which
contain the attributes of the various objects, keyed by a single object-identifier
attribute; and (2) connection relations, usually all-key, which represent the part-of
relations of the hierarchical tree.

The datastore manager now performs two distinct operations for each input and
output transaction between a process and the datastore. In the case of providing
input to a process, the manager: (1) extracts an input view from the global schema
through a sequence of relational operators, so that all information needed by the
process is contained in the view; and (2) makes the view available to the process.
Two options are available to the processes: (1) a flat file identical to that of the
initial implementation; and (2) a file of database commands which, when executed
by a copy of the DBMS manager on the process machine, creates a local copy of the
view. The former option allows the processes to run without modification, whereas
the latter option is made available to processes which may wish to access the data
through their own DBMS queries.

160

ATTRIBUTE

NAME

CLASS

IS-A

NAME
NAME-CODE
PART-OF

MPOS

MNEG

VMAX
MULTIPLIER
UNBRACED-LENGTH
X1

X2

Y1

Y2

pAl

22
CONSTRUCTION-TYPE
DESIGNATION
WEIGHT
CONCRETE-TYPE
PSTEEL

GRADE

SHAPE
XL-DIMENSION
YL-DIMENSION
ZL-DIMENSION
XG-COORDINATE
YG-COORDINATE
ZG-COORDINATE
MATERIAL-COST
CREW-COST
START-TIME
FINISH-TIME

VALUE

BEAM-378

BEAM
DE-GROUP
BEAM-11

81
TYP-FRAME-1540
§273.4375

25.0
1.0183333
1.0741667
NIL

NIL

NIL

NIL

NIL

NIL

NIL

PLACED BY
STANLAY

STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
STANLAY
SPEX
SPEX
SPEX
SPEX
SPEX
SPEX
SPEX
SPEX
SPEX
SPEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX

USED BY
SPEX PLANEX

SPEX PLANEX
SPEX PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
PLANEX
USER
USER
USER
USER
USER
USER
USER

Figure 4. A BEAM instance object in the datastore.

161

In receiving output from a process, the manager: (1) receives the output view
of the process, again by either of the two options; and (2) merges the output view
into the global schema through a sequence of relational operators.

The only major conceptual difference between the two implementations is the
explicit separation of input and output views. The input view is provided in a
‘read only’ mode: it is not recovered from the process upon its completion. In this
fashion, database integrity maintenance is shared between the processes and the
datastore manager: (1) the processes insure that their output is consistent with
respect to the input provided; while, (2) the datastore manager insures consistency
among the outputs, i.e., consistency of the global representation.

3.5 Common Display Interface

The data residing in the datastore is inaccessible to users without a common user
display interface. As the interface is intended for a variety of users with different
backgrounds, it must conform to certain graphical standards and should exhibit
a degree of intelligence. An interface of this type was developed for the IBDE
project. It provides a uniform set of interface facilities for the following functions:

o Graphical display of the status of all processes. Each process is shown as
either pending, active, or completed.

e Graphical display of data at any level of the project datastore representa-
tion. As soon as a process is completed, the content of the datastore can be
displayed. The designer sees the geometric representation of these data as
three-dimensional objects or as charts and symbols.

o Textual and graphical display of object classes. The user selects one of the
datastore objects directly from a menu, and the geometric and textual infor-
mation is displayed.

e Graphical display of selected items. The designer can specify constraints to
view objects of a certain class or that fall within user-defined limits. All
objects found conforming to the constraints are highlighted on the graphical
display.

e Graphical navigation to select specific objects. Once selected graphically, the
object is highlighted and the appropriate datastore object appears on screen
in a pop-up window.

4 Control

The controller is responsible for activating the individual processes.

162

4.1 Objectives

The design and subsequent evolution of the controller was dictated by three major
considerations.

Support of different strategies. From the inception of the project, it was in-
tended that the controller be able to support a number of different activation
strategies, ranging from simple, fixed scheduling through demand-driven scheduling
and on to a variety of planner-based and blackboard-based opportunistic strategies.

Flexibility of implementation. As with the datastore, it was intended that the
controller have an evolution of its own, without affecting the individual processes.
The Design Systems Laboratory of Engineering Design Research Center at CMU,
within which the IBDE project is conducted, has an active research program on
generic design environments. The IBDE project is viewed by that Laboratory
as a testbed for exploring the applicability of these environments in a specific
application area. Therefore, flexibility in porting IBDE from one environment to
another was a major consideration.

Minimal domain knowledge. In order to support the above two objectives, it
is essential that the controller be as generic as possible, that is, that it require
minimum knowledge about the domain of building design and construction plan-
ning. More specifically, it is desired that the controller ‘know’ as little about the
individual processes as possible, but use the messages on the blackboards and a
static description of each process to guide the controller.

4.2 Communication with Processes

The processes communicate with the controller by means of blackboard messages.
There are two general classes of messages.

Status messages. Each process is in one of three states: pending, active, or
completed. Whenever an active process terminates, it sends a new status message
which the controller posts on the status blackboard. The message also signifies
whether the process was successful in producing a feasible solution or not. As dis-
cussed in the preceding section, the controller also controls the data communication
between processes.

Inter-process messages. Processes may also generate messages to other pro-
cesses indirectly, particularly to critique some aspects of the design. These messages
are stored on the message blackboard in the form of constraints. The controller
uses these messages to modify the activation sequence of the process involved.

4.3 Implementations

The initial implementation provides a very limited control strategy, namely, an
event-driven, sequential process activation. The controller maintains only the fol-
lowing static description about each process: (1) preconditions for its execution,

163

namely, the process(es) that must have been successfully completed before the
current process can be activated; and (2) machine on which the process runs.

When the preconditions of a process are satisfied, the controller causes that
process to be activated.

The controller is implemented on top of the DPSK (Distributed Problem Solv-
ing Kernel) system developed at CMU [1]. DPSK provides an environment for
distributed problem solving on multiple machines by programs written in several
languages. DPSK provides utilities for sending messages and signals between pro-
cesses running on different machines, generating and responding to events, and
communicating between processes by means of a Shared Memory accessible to all
the processes. DPSK was designed to facilitate the implementation of a variety
of cooperative problem-solving architectures; the current IBDE implementation,
with fixed precedence ordering between processes, is a relatively simple application
of DPSK. However, because of the computational expense of communicating large
volumes of data via DPSK’s shared memory, that memory is used only for the
status messages.

The implementation has been useful in bringing the first version of IBDE up to
operational status. Changes in the processes, such as the addition of CORE and
the replacement of the original HI-RISE process by STRYPES and STANLAY,
were readily accommodated. The integrated system has been run on as many as
9 machines working simultaneously. The machines include HP-9000/320, Micro
VAX, SUN 3 and SUN 4 systems. The controller and datastore manager reside on
the SUN 4; the processes other than SPEX on HP’s and SUN 3’s; while for efficiency
three copies of SPEX reside on three Micro VAXes and process, respectively, the
bottom story columns (so as to supply input to FOOTER quickly), the remaining
columns, and the other structural components.

We are in the process of designing the second implementation of the controller.
It will handle the expanded processes discussed in Section 3 by acting on the design
constraints posted on the message blackboard. A variety of activation strategies
will be explored, including both a planner and an opportunistic scheduler. Two
generic design environments developed by EDRC are being considered as the basis
for implementation.

5 Conclusions

The IBDE project is a testbed for the exploration of integration and communication
issues in the building industry. The processes are knowledge-based and can serve
as surrogate experts (provided, of course, that they adequately capture and utilize
the expertise relevant to their particular task). This enables us to run a variety of
experiments when exploring a particular issue, so that the conclusions reached will
have a strong empirical basis. Furthermore, the modular nature of the IBDE envi-

164

ronment provides a testbed for the empirical evaluation and calibration of generic
integrated design support environments. Experiments with these environments
provides feedback to their developers and can eventually lead to extrapolations to
other design disciplines.

The project deliberately did not start with an overall, normative model of the
building design process. Rather, we prefer to arrive at generalizations about the
design process based on the experience and insights gained from our experiments.
The system itself is intended to serve as a vehicle for discovery and theory forma-
tion.

The IBDE project contrasts sharply with the integrated systems in use or under
development in the building industry. The principal contrast is not knowledge
based vs. algorithmic process components. Integrated systems in industry achieve
a high level of data integration by tying CAD systems, analysis programs, etc.
together through a shared database. However, such systems do not address the
integration issues of building systems, of design and construction processes and of
the thought processes of the disciplines involved. These are the issues addressed
by the IBDE project, where the content and semantics of the communication is as
important as the mechanism of data transfer.

It is premature to speculate what a ‘production’ version of the IBDE system
may look like. The project must first discover a ‘language’ through which the
project participants’ intent may be communicated to others, and through which
critiques can be fed back. Even after such a language is developed, it remains to
be seen how the resulting intimate integration can be implemented in the present
dispersed organizational structure of the industry.

References

[1] Cardozo, E., (1987), DPSK: A Kernel for Distributed Problem Solving,
Technical Report EDRC-02-04-87, Carnegie Mellon University, Engineering
Design Research Center.

[2

Flemming, U., Coyne, R., Glavin, T. and Rychener, M., (1988), ‘A
Generative Expert System for the Design of Building Layouts—Version 2’ in
J. Gero (Ed.), Artificial Intelligence in Engineering Design, Elsevier
(Computational Mechanics Publications), New York, pp. 445-464.

[3] Garrett, Jr., J. H. and Fenves, S. J., (1986), A Knowledge-Based Standards
Processor for Structural Component Design, Technical Report R-85-157,
Carnegie Mellon University, Department of Civil Engineering.

(4] Hendrickson, C. T., Zozaya-Gorostiza, C. A., Rehak, D., Baracco-Miller,
E. G. and Lim, P. S., (1987), ‘An Expert System for Construction Planning,’
ASCE Journal of Computing in Civil Engineering 113, 5, 253-269.

165

[5] Maher, M. L. and Fenves, S. J., (1984), HI-RISE: An Expert System For The
Preliminary Structural Design OF High Rise Buildings, Technical Report
R-85-146, Carnegie Mellon University, Department of Civil Engineering.

[6] Maher, M. L., (1988), ‘Engineering Design Synthesis: A Domain
Independent Representation,’ in Artificial Intelligence in Engineering Design,
Analysis and Manufacturing, 1, 3, 207-213.

[7] Schmitt, G., (1988), ‘ARCHPLAN—An Architectural Planning Front End to
Engineering Design Expert Systems,’ in M. D. Rychener (Ed.), Expert
Systems for Engineering Design, Academic Press, New York, pp. 257-278.

Water Resource Applications of Knowledge
Based Systems: Hazardous Material
Management, and Stream Quality Modeling

Mark H. Houck

School of Civil Engineering
Purdue University

West Lafayette, Indiana
United States of America

Abstract The development and application of knowledge based systems in water re-
sources is growing rapidly. The purpose of this lecture is to review two different applica-
tions that illustrate the range of development of this type of tool. The first application is
a knowledge based system to support decision making in the management of potentially
hazardous or obnoxious dredged materials. The U.S. Army Corps of Engineers is charged
with maintaining the navigability of the waterways of the country. Dredging is a principal
tool used by the Corps for this purpose. However, dredging is problematic because the
disposal of any dredged material that is determined to be hazardous is substantially more
expensive, difficult, and time consuming than non-hazardous material disposal. The man-
agement strategy for dredged material disposal can be represented by a knowledge based
system that is currently under development. The second application is in the area of stream
quality modeling. Specifically, it is a knowledge based system to aid in the calibration and
use of the extended Streeter-Phelps BOD-DO model for a river or stream.

1 Introduction

One of the emerging technologies that will have significant effects on the way we
manage our water resources is knowledge based systems. They represent a new
way of viewing problems. It is not a panacea but it is a new tool that can be
used in conjunction with others to improve decision making substantially in some
domains. Knowledge based systems can be embedded in other techniques, such as
optimization and simulation models, or these models plus other procedures such
as graphics, data base management systems, geographic information systems and
other information processing procedures can be embedded in the knowledge based
system.

167

B. H. V. Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume 11, 167-175.
© 1992 Kluwer Academic Publishers.

168

Although knowledge based systems technology has been developed only re-
cently, there are already a significant number of applications in water resources.
These applications span a wide range including the calibration and use of hydrologic
and hydraulic models, water supply and waste water management, and hazardous
waste management (Maher, 1987; Ortolano and Steineman, 1987). The purpose
of this paper is to provide an introduction to two applications of knowledge based
systems in the area of water resources. The first application is the management of
potentially contaminated dredged material; the second is the calibration and use
of a stream quality model.

2 Potentially Hazardous Dredged Material
Management

This section contains an overview of the Dredging And Disposal Ecological
Evaluation System (DADEES) computer program, prepared for the U.S. Army
Corps of Engineers. The current version of DADEES is an experimental proto-
type of an application program designed to aid Corps of Engineers personnel in
the decision making involved in the aquatic disposal of dredged material. As such
a prototype, the program is constructed from a simplified representation of the
aquatic disposal decision making problem taken primarily from Appendix A of
Lee et al. (1985). DADEES is entirely menu-driven and relatively self explanatory
to the knowledgeable user to whom the prototype is directed, and who it is as-
sumed is somewhat familiar with the decision making framework described in Lee
et al. (1985).

The purpose of DADEES is to lead the user through a three-tiered testing
strategy for the determination of the aquatic disposal requirements for dredged
material. DADEES is restricted to aquatic disposal; upland disposal alternatives
are not considered in this prototype.

This testing system is invoked when an area for which dredging is being consid-
ered is believed to have some sort of contamination. To use the program, the user
must have in hand bulk chemical analyses of the sediments to be dredged (‘test
sediments’) and of the sediments in which aquatic disposal is being considered
(‘reference sediments’), for each contaminant of concern to the user.

2.1 Tierl

The first tier in the testing protocol is the bulk chemical analysis of the sediments.
The list of contaminants for which bulk chemical data are available is identified by
the user, and the concentrations of each contaminant for both the test sediment
samples and the reference sediment samples are input in a spreadsheet format,

169

in units selected by the user. Upon entry of these data, DADEES executes the
primary set of rules in tier 1 to answer the question:

e Do all test samples show concentrations below the average concentration of
the reference samples, per contaminant?

If the answer to the above question is Yes, then disposal of the dredged material
in the area from which the reference samples were taken will create no long-term
increases in the contamination levels of the disposal site, so DADEES arrives at
the conclusion that aquatic disposal is allowed with no restrictions and the decision
making analysis is completed. Otherwise, further testing is required.

At this stage of development, DADEES invokes a relatively detailed component,
auxiliary to tier 1 testing, wherein potential maximum bioaccumulation values
are estimated. These values are the Thermodynamically-defined Bioaccumulation
Potentials (TBP’s). The steps taken in the calculation of the TBP values in this
module of the program are developed by McFarland and Clark (1986). Here it
will suffice to note the actions taken by DADEES upon evaluation of the TBP’s.
Firstly, DADEES can evaluate TBP’s only for those contaminants which are neutral
organics. The TBP values for the neutral organic contaminants are presented to
the user, who is asked to identify those values of concern. Then,

e If the user identifies none of the TBP values as showing magnitudes of con-
cern, and if all of the contaminants which failed primary tier 1 testing are
neutral organics, then DADEES concludes that aquatic disposal is allowed
without restrictions, subject to a Local Authority Decision (LAD) on further
testing.

If this is the case, the final conclusion is reached and the program may exit.
Otherwise, either some of the contaminants showed TBP values of concern, or some
of the contaminants failed the bulk chemical analysis and are not neutral organics
and so were not considered in the evaluation of maximum bioaccumulation values,
in which case DADEES proceeds to the next level of testing, tier 2.

2.2 Tier Il

Tier 2 testing is the experimental evaluation of actual toxicity levels resulting from
local species’ exposure to the contaminated sediments. At this stage, DADEES
requires the results of the bioassay (toxicity) experiments in the form of percentage
toxicity per test and reference sediment sample. Also required is a percentage
toxicity for a control sample. This value is used to calculate the LD50, which
equals the toxicity of the control sample plus 50 percent.

Once DADEES obtains these data from the user, it enters the tier 2 rule base
to determine whether a final conclusion may be drawn at this point or whether
further testing is required. These rules may be summarized in the following two
questions answered by DADEES. First,

170

e Is the toxicity of any test sample greater than the LD507?

If so, DADEES concludes that aquatic disposal is allowed only with restrictions
and is finished. Otherwise, DADEES determines:

e Are all test sample toxicities below the average of the toxicities of the refer-
ence samples and below the LD50?

If so, DADEES arrives at the conclusion that aquatic disposal is allowed with no
restrictions, with a Local Authority Decision (LAD) on further testing. On the
other hand, if any test sample toxicity is above the average of the toxicities of the
reference samples, DADEES enters the third tier of testing, the bioaccumulation
tests.

2.3 Tier II1

At this point, the user must provide results of experimental bioaccumulation assays,
per test and reference sample, and per contaminant; DADEES then invokes the
tier 3 rulebase to draw a conclusion. Currently, DADEES recognizes only single-
species bioaccumulation data. This rulebase may be represented in the following
three questions:

1. Do FDA Action Levels exist for all contaminants?

If the answer to question 1 is No, DADEES concludes that a Local Au-
thority Decision (LAD) is required, which may lead to either restricted or
unrestricted aquatic disposal. Otherwise DADEES continues to question 2:

2. Is the bioaccumulation concentration of any test sample above an existing
FDA Action Level?

If this is the case, DADEES concludes that aquatic disposal requires restric-
tions. Otherwise, we continue to question 3:

3. Is the bioaccumulation concentration of any test sample above the average
of the bioaccumulation concentrations of the reference samples?

In the case where this is true, then all the test samples must have bioac-
cumulation concentrations below the FDA Action Levels (by question 2),
yet some test concentrations are above the reference sample concentrations.
Under these conditions, DADEES concludes that a Local Authority Decision
(LAD) is required, which may lead to either restricted or unrestricted aquatic
disposal. If the answer to question 3 is No, DADEES concludes that aquatic
disposal is allowed with no restrictions.

171

At this point DADEES has reached a final conclusion, based upon the biocaccumu-
lation data, and any required LAD’s.

Work is continuing on the development and expansion of DADEES. Only a
portion of the overall decision making process for managing potentially contami-
nated dredged materials has been incorporated in the program to date. DADEES
is designed to run on a standard AT clone (286 machine), running DOS, with at
least 640K bytes of memory, and a math co-processor. It was originally written in
the KES expert system shell but is now rewritten in C.

3 Stream Quality Model Calibration and Use

Although simulation tools and techniques have long been successfully used in many
applications, they have expanded and matured in recent years in concert with
the onslaught of new and more powerful computer capabilities. Among the more
promising enhancements to simulation methods has been the incorporation of ar-
tificial intelligence or expert systems technology. This integration is particularly
beneficial when focused at simulation models that are complex and difficult to use
or calibrate.

In many engineering areas, simulation models are not used to their full potential
due to special expertise required by the user and/or the large investment of time
and money involved. For such models, an expert system might be used to facilitate
and perhaps automate the procedures necessary to run the model.

The focus of this section is on the development of an expert system to aid water
resource engineers in the calibration and use of a stream quality simulation model.
An expert system shell is used to automate and facilitate a successful stream quality
modeling exercise. The shell environment enables fast and efficient prototyping as
well as integration of all aspects inherent to traditional stream quality simulation
and model calibration. A Streeter-Phelps calculation routine, graphics software,
and a program to perform model calibration are all linked externally to a knowledge
base which provides ‘expert’ advice and instructions.

A typical dissolved oxygen analysis of the stream consists of first gathering
physical data (e.g., velocity, depth, discharge, temperature, etc.) along the length
of river being modeled. Estimates of model parameters (e.g., deoxygenation and
reaeration rates) are then made and the resulting model-predicted dissolved oxygen
profile is calculated and visualized graphically. Finally, calibration of the model
parameters may be performed to achieve conformity between the model-predicted
profile and any available measured field data.

A complete dissolved oxygen analysis, incorporating several reaches of a stream,
is a rather lengthy undertaking. It requires the collection of a large amount of data,
the use of heuristic parameter estimation techniques that may result in conflicting
parameter values, the use of expert judgment to resolve these conflicts, the use of

172

a trial and error or formal optimization calibration process for refinement of the
model, and the use of graphics to display the large quantities of measured and
model-predicted data in meaningful ways.

Entire textbooks have been written on the subject of water quality model-
ing (e.g. Thomann and Mueller, 1987). Therefore, only a limited description of
the stream dissolved oxygen analysis will be provided. The principal components
acting to deplete stream dissolved oxygen include carbonaceous biochemical oxy-
gen demand (CBOD), nitrogenous biochemical oxygen demand (NBOD), sediment
oxygen demand (SOD), and aquatic plant respiration. Oxygen contributors are
reaeration from the atmosphere and photosynthesis by aquatic plants.

Organic wastes, contained in point sources such as domestic and industrial
sewage and non-point sources such a storm water runoff, when introduced into
a stream system, directly affect the concentration of dissolved oxygen through
the activity of microorganisms that derive a food source from the waste. As the
amount of food source (wastes) increases, these microorganisms reproduce and
more dissolved oxygen is required for metabolic energy. As the waste is consumed,
the food source can no longer support the increased microorganism population
and some die off. As the dissolved oxygen concentration in the stream decreases
due to these microorganism activities, the rate of reaeration from the atmosphere
increases. The result is that the stream reaeration rate eventually becomes greater
than the stream deoxygenation rate and the stream is able to recover.

For this application, and thus demonstration of the use of an expert system
tool to assist decision-making, photosynthetic effects have been ignored but car-
bonaceous BOD (CBOD), nitrogeneous BOD (NBOD), benthal or sediment oxy-
gen demand (SOD), and reaeration are all considered. The differential equation
describing the dissolved oxygen reactions is:

9D _ 8D _ kD + KuLoe ®(¥) 4 KoNoe ¥ (5) 4 §, (1)

at 12).4
where X is the distance downstream measured from the top of the reach (m); D
is the dissolved oxygen concentration deficit measured from the saturation concen-
tration (mg/L); U is the velocity of the stream which is assumed within a reach to
be constant (m/d); L is the CBOD concentration at the top of the reach (mg/L);
N, is the NBOD concentration at the top of the reach (mg/L); K, is the reaeration
rate coefficient (d7!); K, is the CBOD deoxygenation rate coefficient (d7!); and
K, is the NBOD deoxygenation rate coefficient (d!). S, is the effective SOD rate
throughout the volume of water in the stream expressed in units of mg/L/d. It
may be estimated by multiplying the usually reported SOD rate S, (g/m?/d) by
the hydraulic radius (m?) of the stream and then dividing by the cross sectional
area (m?) of the stream, or by dividing S, by the depth (m) of the flow. Integration
of Eq. 1 yields Eq. 2 which is actually used in the expert system.

D = Dye ¥(@)

173

+ (1 e ®) 2 @)

Other models of dissolved oxygen with more or fewer terms can be accommodated
in the expert system.

At the outset of a run time session using the expert system, the total length
of river to be modeled must be divided into a number of ‘reaches.” For mod-
eling purposes, each reach is assumed to have constant characteristics or model
parameter values throughout its length. The system describes to the user typical
occurrences along a river where a reach subdivision should be made: for exam-
ple, point source discharges, slope changes, confluences, dams, waterfalls, etc. The
calculations and/or calibrations will be performed for each reach sequentially.

Downstream boundary conditions from one reach will be transferred automati-
cally to upstream boundary conditions for the next downstream reach and a mass
balance performed in the case of inflow of some form. The system will keep track
of results for individual reaches and can display continuous results for all reaches
previously modeled at any time during the run time session.

Next, the expert system queries the user to determine whether the particular
run time objective is for simulation or calibration. If it is simulation, the expert
system merely acquires all necessary input data, performs the dissolved oxygen
calculations and graphically presents the results to the user. This is performed for
all the reaches sequentially. The calibration option is a bit more involved. If chosen,
it implies measured field data are available and the user would like to calibrate the
model to give a ‘best fit’ to the measured data.

For each reach, the value of the reoxygenation parameter, K,, is estimated
first using ‘rules based’ inferencing. These rules are based on empirical formulas
and are intended only to give the user an approximate starting value of K,, if
one is not available. The user is informed of an empirical value of K, as well as
the corresponding literature reference. If more than one empirical formula applies
for the given conditions, the user will be informed of each value. The system
recommends values for K,, but leaves the user the option of choosing any value.

Next, the value of the carbonacous deoxygenation coefficient, K; is estimated.
The user is first queried as to whether or not CBOD field measurements are avail-
able for the reach. If field data are available, the system is programmed to compute
K, based on those data using a sum of least square deviations procedure on log
CBOD vs time downstream. Again, the user is left with the final decision as to
the value of K;. If no field data are available, the system queries the user for a

174

value of K;. The model possesses an analogous capability to determine the value
of nitrogenous deoxygenation coefficient, K.

Next, the user is asked if there is any inflow into the stream at the beginning
of the reach. The two most likely causes of such inflow would be from a point
source discharge or another tributary stream. In some instances, it may include
non-point source discharges. If there is inflow, the user is requested to input the
total incoming discharge, the dissolved oxygen, CBOD, and NBOD concentrations
as well as temperature, so that a mass balance calculation can be performed with
the upstream conditions.

Now that all information pertinent to the reach has been ascertained, it is passed
to an external calculation routine via a communication file. The user is informed
that the calculation routine has been invoked and the appropriate adjustments
have been made to K,, K;, K, and S; due to temperature of the stream. The
calculations routine uses Eq 2 to determine the dissolved oxygen profile in the
reach and a graphics package to display the profile for the user.

The calibration phase of the expert system is an extension of the simulation
phase whereby the dissolved oxygen controlling parameters are perturbed itera-
tively until the calculated values are matched as closely as possible to the mea-
sured dissolved oxygen values. The calibration phase begins to deviate from the
simulation phase after the first graphic of calculated dissolved oxygen vs length
is brought to the screen. At this point, the user is asked to enter the measured
dissolved oxygen field data for the reach. The user would have previously indicated
that field data were available by choosing the calibration alternative for the run
time option. Now that the system possesses calculated as well as measured data,
it has the capability of presenting graphically the two together.

To calibrate the parameters for this reach, the expert system uses an external
LISP program which will implement a pattern search to determine which direction
in a four dimensional space will yield a lower expected error. The four dimensional
space comprises the four oxygen controlling parameters K,, K4, K,, and S;.

The search continues until one of three ending criteria is met: expected error
is less than 1.00%, subsequent iterations do not improve expected error or ten
iterations are performed. Other stopping criteria could easily be implemented if
desired. Once calibration is complete, the user may choose to view a graphic
of measured dissolved oxygen concentrations and model-predicted or calculated
dissolved oxygen concentrations using the calibrated parameter values along the
length of the reach. Once the model has been calibrated for this reach, the next
downstream reach is considered.

Acknowledgment The work described in this paper is due in large measure to the
efforts of Tim Ginn and Dave Wood.

175

References

Lee, C. R. et al., (1985), Decision making Framework for Management of Dredged
Material: Application to Commencement Bay, Washington, Miscellaneous Paper
D-85-, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

Maher, M. L., (1987), Expert Systems for Civil Engineers: Technology and Application,
American Society of Civil Engineers, New York, NY.

McFarland, V. and Clarke, J., (Draft), ‘A Simplified Approach for Evaluating
Bioavailability of Neutral Organic Chemicals in Sediments,’ Draft Technical Note,
U.S. Army Corps of Engineers Waterways Experiment Station,

Ortolano, L. and Steinemann, A. C., (1987), ‘New Expert Systems in Environmental
Engineering,’ Journal of Computing in Civil Engineering 1, 4, 298-302, (October).

Thomann, Robert V. and Mueller, John A, (1987), Principles of Surface Water Quality
Modeling and Control, Harper and Row, Inc., New York, NY.

The Development and Application of an
Expert System for Drought Management

Richard N. Palmer

Department of Civil Engineering
University of Washington
Seattle, Washington

United States of America

Abstract A recurring problem in applying systems analysis tools in water resource man-
agement is the successful presentation of results to decision makers. Expert systems have
been suggested as a decision tool to create models that are more easily incorporated into
‘real’ decision environments. The use of such models has been limited in the management
of water resources, however, by the complex environment in which such decision are made
and difficulty in developing simple rules of thumb for operation. In addition, modelers are
often reluctant to abandon the information and insights offered by computer models.

This paper describes the development of a decision support system used to manage
the Seattle, Washington water supply during droughts. The system includes an expert
system, a linear programming model, database management tools, and computer graph-
ics. The expert system incorporates operator experience and expertise using a rule base
developed with interviews of water management personnel. The expert system is also used
to integrate the other modeling techniques into a single system. The linear programming
model determines system yield and optimal operating policies for past and predicted hy-
drologic regimes. Database management and graphic software allow the display of over
two thousand operating policies generated by the linear program.

1 Introduction

This paper describes the development and application of a computer model used by
the Seattle Water Department (SWD) for operations during drought. This model
provides guidance for initiating voluntary and mandatory water-use restrictions.
The model uses an expert system to integrate several programming techniques in-
cluding linear programming, database management system, and computer graph-
ics. The model is mathematically complex yet highly user-friendly. It incorporates
both subjective and quantitative information. Heuristic knowledge obtained from
managers of the water supply system provides the foundation for the expert system.

177

B.H.V. Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 177-187.
© 1992 Kluwer Academic Publishers.

178

Although expert systems techniques are advocated for a wide variety of settings
in Civil Engineering (Fenves, et al. 1984, Fenves 1986) few examples of successful
applications exist in water resources. This is due, at least in part, to the com-
plex decisions required for proper management. It also results from difficulties in
converting these decisions into the simple ‘rules of thumb’ associated with expert
systems. This paper directly addresses these problems. The approach suggested
requires extensive numerical analysis before a drought event. However, it provides
quantitative and qualitative information to aid decision makers in making rational
and consistent operating policies.

This paper begins with a brief introduction to expert systems and their char-
acteristics. Next, it describes the Seattle water supply system with a chronology
of the 1987 drought event, the worst drought event on record. Procedures for
drought management used before this event are also characterized. The remainder
of the paper discusses the development and application of the integrated computer
software used for drought management.

2 Seattle Water System

The Seattle Water Department (SWD) provides direct service to 541,000 Seattle
residents and is a wholesaler to 549,000 residents of King County (SWD 1986).
Water is taken from the Tolt and Cedar Rivers, both of which originate in the
Western Cascade Mountains. Minimum instream flow requirements limit diversions
from each river. These instream flow requirements exist to maintain water for
fisheries, hydropower generators, and recreation usages.

Although averaging over thirty inches of rainfall annually, the area is susceptible
to droughts. The SWD estimates its safe yield at 169 MGD with a 98% reliability
(one shortage event in fifty years). Safe yield is the seasonally varying, maximum
volume of water available while meeting operational constraints of the system.
Municipal water demands currently average 170 million gallons per day (MGD)
annually and are increasing at the rate of 2 MGD per year. Until new sources
are developed, little excess capacity exists to meet unusually high demands or low
supply situations.

For successful operation during the summer, reservoir storage levels must be
near capacity after the spring snow melt. Average rainfall during July and August
is 1.8 inches; thus, the system also depends on autumn precipitation to refill its
reservoirs. Unusual climatic events, such as those that occurred in 1987, cause
system storage to decline to levels that require water use restrictions.

To guarantee an orderly response to any water shortage, the SWD developed
the Water Shortage Response Plan (WSRP). This plan addresses problems related
to the 1-in-50 year drought event (SWD 1986). The objective of this plan is to
maintain essential services while minimizing the net economic loss during a drought

179

event. The WSRP envisions two types of shortages: a summer shortage and a
fall shortage. Each type of shortage consists of a multi-stage conservation plan
with progressively higher stages initiated as serious conditions develop. Summer
shortages result from climatic and hydrologic conditions that cause system reservoir
levels not to be refilled by late spring. The fall shortage scenario results from low
fall precipitation that is insufficient to replenish system storage after summer peak
use.

Conflicts between the City of Seattle, the Corps of Engineers, and Washington
State Department of Fisheries, and the Washington State Department of Ecology
are common during periods of low flow. These conflicts result from the different ob-
jectives the agencies have for water use in the Tolt and Cedar watersheds. Figure 2
illustrates the decision process used before 1987. Decisions were made in a formal,
if ad-hoc manner, attempting to weigh conflicting objectives of the agencies. Only
a limited amount of quantitative data were available to all agencies and often the
precise impacts of decisions were not known.

3 The Drought of 1987

The 1987 drought began in the early summer and continued into the late fall.
Total precipitation for the 1987 Water Year (October 1-September 30) was 80% of
average. Above normal rainfall and snow occurred in the winter and early spring.
However, strict adherence to flood control levels prevented storage of the water.
Abnormally high temperatures during this period left the snow pack depleted and
increased reliance on summer flows. Flows in the late spring were below normal
and the reservoirs did not fill to maximum water supply capacity. By early June
voluntary water use restrictions were considered and by late June, they were a
reality.

Flows during June and July proved to be among the lowest on record. On
August 3, mandatory water use restrictions were initiated including limitations on
outdoor water use. These restrictions were the first required since the early 1960’s.
These restrictions resulted in decreased demands, but total usage remained some
20 MGD above the desired target. By late August, the drought became one of
the worse, if not the worse, on record. The regional nature of the drought became
obvious by September. Tacoma, Washington announced required purchases of
water from other suppliers. Tacoma had relied on the fall rains and had not
instituted any significant restrictions.

The decisions required in this situation are similar to those faced by the man-
agers of other systems during an extended drought. When should the public be
informed of impending problems? When should voluntary restrictions be initiated?
What level of voluntary restrictions are required? When are voluntary restriction
insufficient and mandatory restrictions required? When can operations return to

180

normal?

4 Development of SID

Several programming approaches were used to develop an integrated model with
the characteristics previously described. The model is denoted as SID (The Seattle
Water Department Integrated Drought Management Expert System). A commer-
cial expert system shell (Level 5 Research, 1986) is the primary interface with
the user. The expert system activates other software programs providing specific
functions not available with the expert system in isolation. In addition, the expert
system serves to incorporate operator experience and institution constraints.

Two fundamental problems existed in the development of the integrated model.
The primary problem concerned incorporating operator experience because little
public knowledge existed describing operating policies. The second problem re-
lated to the development of quantitative information to aid decision makers. This
information was to serve as guidance for operators and not to diminish their role
as decision makers.

The flow solution approach adapted in SID was the integration of several types
of modeling approaches. An expert system incorporates general operating rules di-
rectly using the rules developed by SWD managers. A linear programming model
generates specific information concerning the probability of system yields and po-
tential economic losses. In addition, the linear programming model generates spe-
cific operating policies for a sixteen week period. These policies include when to
initiate water use restrictions and at what level. Database software stores these re-
sults and makes them accessible to the expert system. When necessary, the expert
system also accesses graphic routines to display the results. After reviewing the
rules and suggestions of the expert system, the user can modify specific policies to
evaluate their impact on operation.

SID’s primary output is a one week operating policy. SID is operated weekly to
generate subsequent restriction policies. Because of rapidly changing climatic con-
ditions, it is unwise to develop rigid long range policies. Each of SID’s components
is described below.

5 Description of Linear Programming Model

Although the expert system contains general rules of operation provided by the
system managers, quantitative information can supplement operator experience.
This provides operators with an estimation of the system drought potential based
on its state at a given time. This information is generated using a position analysis
(Hirsch 1977). In this procedure, past streamflow data serve as surrogates for

181

potential future inflows. State variables, time and storage, are defined and the
system operates for a prescribed period.

Hirsch performed his analysis with a simulation model, however, this research
uses a linear programming model for this purpose. This model (denoted as LPW)
operates on a weekly time period, incorporates physical and operational constraints
and optimizes the system’s operation. Two objectives are used: maximize system
yield and minimize the economic loss associate with deficits from a specified (and
time dependent) target. For this system, the planning period is four months and
each year is an independent event. Streamflow data exists for nearly fifty years
for primary sites of interest in the system, making this an especially attractive
approach.

When estimating the system yield, the constraints include continuity at both
reservoirs, instream flow requirements and continuity on the moraine aquifer in the
Cedar system. The Cedar system is more complex because of this aquifer. The
aquifer is recharged by seepage from Masonry Pool and returns water to the Cedar
River further downstream. Both occur at unknown rates and which the model
approximates (Palmer and Johnston 1984). Bounds exist for storage levels on all
reservoirs, pipeline capacity and instream flow requirements for the Tolt system
and Lake Washington elevation.

The second objective requires several additional constraints to meet water use
implementation requirements. Upper bounds on each stage of WSRP restrictions
represent the maximum reduction in water use that is possible for each stage. A
piece-wise linear objective function approximates the economic losses associated
with the implementation of water use restrictions. Additional constraints limit
stage increases to one per week, preventing staging from skipping two or more
levels in one week.

The model was executed using the historical record (1929-1975) for a variety
of reservoir storage levels, starting dates, and system demands. System yield was
calculated for each streamflow record for an initial storage of between 10 and 100%
of capacity (by units of 10%) and for June through October. This requires 2,450
runs of the model. The results of the yield analysis identified configurations that
result in economic losses for specific demands. The minimum economic loss, and
its associated operating policy, was calculated for the appropriate configurations
for base level demands of 170, 180, 190 MGD. This resulted in approximately 600
addition runs of the model.

Execution of each yield run requires approximately three minutes on an IBM/AT
using XA, a linear programming software package (Sunset Software 1987). Execu-
tion time of the economic loss are less predictable, requiring between six and twelve
minutes. Approximately 200 CPU hours were required for all linear programming
runs. This task was simplified by writing software to automate this process.

182

6 DataBase Management

Database management software stores the results of the linear programs. Access to
the previously generated results allows them to play a significant role in real-time
operation. As previously stated, computation time prevents real-time generation
of the results. The database management techniques also allow incorporation of
the results into the expert system rule base.

Record code-information is used by graphics routines and expert system to
access the correct record, starting week ,base level demand, initial storage, yield
array, economic loss array, total number of drought years, drought years, and Water
Shortage Response Plan staging data for drought years.

7 Graphics Routines

Software used to generate graphic routines activated by SID are written with the
Turbo Pascal Graphics Toolbox (Borland International 1985). The graphics soft-
ware displays the cumulative distribution functions (CDF) for system yield and
economic losses, optimal WSRP staging sequence for the 10 worst droughts on
record, and a weighted staging sequence. The expert system activates the graphics
software for specific system configurations (initial week, initial storage levels, and
base level demand) that have a potential for water shortage. Subsequent sections
present examples of the displays.

8 Expert System Rule Base Development

The expert system functions to integrate the other programs used in SID. However,
its primary purpose is to provide a mechanism to incorporate a rule base developed
by SWD personnel. Drought management decisions rely on subjective evaluations
and operational experience as well as quantitative variables. Decisions are made
relative to the severity of a drought, the potential economic effect it may present
and the proper management strategy to minimize it’s impact. Although quantita-
tive analysis can supply information to aid in these decisions, a final decision must
also include the judgement of the manager who is responsible for the results. The
goal of SID is to incorporate human expertise and insights into the modeling of
water supply operation, allowing an accurate representation of the decision making
environment.

Interviews with SWD personnel were conducted to determine the system vari-
ables most significant when making drought management decisions. Two SWD
representatives participated in this effort: David Parkison, head of the engineer-
ing planning section and Rosemary Menard, chief information officer of the water

183

conservation section. These individuals had direct responsibility for system opera-
tions and public information during drought events. A series of modifications and
additions to the rule base were made through these meetings. In the interviews the
most significant management information was defined as the likelihood and sever-
ity of potential system shortfalls. They also defined the most relevant results from
the linear programming model as the indicators of potential system failure: time of
year, storage levels, current demand, future inflows, future demands, estimations
of yield for extreme conditions (such as the ten most severe years on record) and
estimations of the future drought potential.

9 Expert System Rule Base for Drought
Management

The rule base that developed contains two types of rules. Type I rules provide the
user with general drought potential information for a system configuration but do
not provide operation guidance. Type II rules incorporate the results from historic
drought events and rules concerning system operation to recommend a specific
action.

Type I rules require the user to provide the initial system configuration to the
model. The user enters the initial week, initial system storage, and base level de-
mand into the expert system. For the given configuration the system then rates the
drought potential: Severe, Serious, Moderate, Minor, or None. This provides the
user with general information on the severity of the current system configuration
compared with historic events. An example of a Type I rule for July is:

Rule July 1

if The initial week is July 1

and Initial system storage = 70

and Base demand = 170

then Conservation restriction may be required
and Drought Potential is Minor

Discussion with SWD personnel lead to drought potential being defined as:
None, for no droughts in the database for a given configurations; Minor, for 1
drought in the database; Moderate for 2 droughts in the database; Serious for 3 or
4 droughts in the database; and Severe of 5 or more droughts in the database.

Type II rules provide the user with guidance on system operations. The user
enters a prediction of the expected inflows and demands for the upcoming month.
The program then estimates the next month’s system storage. From the database,

184

the systems returns values for the number and economic loss of droughts associated
with the current system configuration, the average yield of the 5 smallest years
(the average 10% yield) and the number of droughts associated with next month’s
predicted configuration.

The system uses this information to determine the proper water use restriction
level. SID uses the appropriate variables first to determine whether to lower the
current drought level restriction. If this goal cannot be achieved, the system pur-
sues rules associated with the goal of remaining at the current level of restriction.
If none of these rules are satisfied, the system pursues rules associated with the
goal of increasing the current level of restriction.

There are five basic heuristics gathered from interviews with system experts
related to general operation. These are:

1. Lower stages (WSRP stages 1 and 2) are readily implemented and require
examination of only a few system variables

2. Higher stages (WSRP stages 3, 4, and 5) are more difficult to implement and
require the examination of many system variables

3. Stage 2 restrictions can be implemented directly from stage 0 if drought
conditions are potentially serious

4. Stage 3 and stage 4 are interchangeable except for the season of implemen-
tation. Stage 3 is implemented during summer months (June, July, and
August). Stage 4 is implemented during fall months (September and Octo-
ber)

5. Reduction in staging will not occur until system storage levels are sufficient
to meet NORMAL fish flow requirements.

Different criteria are used for the lower and higher restriction level to deter-
mine whether drought restrictions are decreased. Both assure that normal fish
flow requirements are met before stage reductions are made. Over 140 rules are
incorporated into the rule base.

10 Use of Integrated Drought Management
System

It is difficult to portray the use of SID in written text because of its reliance on user
interactions and computer graphics. This difficulty is not unique to this model but
has been a consistent problem in the literature. Unseen by the user, SID moves
between the expert system shell, graphic software, database software, and other
subroutines written in Fortran.

185

SID begins with an animated color screen showing reservoirs filling and emp-
tying. (‘Animated’ implies movement on the screen.) Nine color graphic ‘HELP
Screens’ follow describing the various functions of SID. These ten introductory
screens are written in Turbo Pascal. An experienced user can activate SID and
bypass all introductory information.

Next, SID activates the expert system. Three screens obtain user information
describing the system. This information includes the week of interest, the cur-
rent storage in the reservoirs, and the municipal water demands. Each screen is
accompanied by HELP facilities that allows further explanations of the questions
presented. In addition, the user can ask SID why the question is posed. If queried,
SID presents the rule in its rule base that caused the question to be asked. At any
point in the consultation, the user can request from SID a listing of all rules or any
system variables.

Using this information, SID examines the database and classifies the drought
potential as Severe, Serious, Moderate, Minor, or None using criteria described
previously. If the drought potential is defined as none, the SID suggests that the
user either begin with a new system condition or terminate its use.

If the drought potential is any level but ‘None,” SID activates the graphics
software. This software plots the cumulative distribution functions of system yield
and potential economic loss. The plots contain statistical information concerning
the average behavior of the system and the average of specified quartile events.
The ten most severe events are listed in the order of their severity in the economic
loss graph.

Next, the user identifies specific drought events for which more information is
desired. The sixteen week optimal WSRP staging sequence for these droughts are
presented as histograms, with as many as four presented on the screen at once.
These histograms illustrate optimal management policies for past droughts that
minimized economic impact. If desired, the user can develop a sixteen week policy
for the current drought by weighting the staging associated with any of the ten
previous droughts. The selection of the previous droughts to include depends upon
their estimated probability of occurrence, the level of economic loss, or degree to
which the user believes the current drought situation under evaluation is similar
to any of the previous droughts.

The user then estimates the total system demand and total system inflow for the
next month and the current level of water use restriction. Demand and supply can
not be estimated with precision, however, supporting software (not incorporated
into SID) has been developed to aid in this estimation. Using these estimates, SID
evaluates the drought potential if these demands and supplies do occur during the
next month. Drought statistics for the current month and the predicted subsequent
month are then presented. The drought potential for both months are then used
to determine the appropriate level of restriction for the current week.

186

The user can alter any input variable and examine the sensitivity at the conclu-
sion of the consultation with SID. The rules activated in deciding the appropriate
level of restrictions can be reviewed allowing the user to understand the exact logic
used. If a rule appears inappropriate, it is possible to move directly into the rule
base, alter the rule, re-compile the program, and begin a new consultation.

11 Conclusion

This paper describes the development and application of an expert system designed
to aid in drought management. The model integrates the use of linear program-
ming, database management, and computer graphics using an expert system. In
addition, the expert system is used to incorporate the experience and insights of
system managers into the range of possible operating policies.

Specific operational objectives for the model were identified at the outset of
model development and the model was constructed to meet these goals. The need
for real-time analysis and user friendliness dictated many of the techniques that
were incorporated. Optimization techniques were needed to identify system yield
and operation, but were inadequate in capturing the more subjective aspects of
system operation and in presenting the results in a fashion meaningful to system
managers.

The authors contend that the development and use of the expert system greatly
aided the system managers during the 1987 drought. Because the event will not
reoccur such a contention can not be proved nor disproved. However, the model
did provide information that allowed managers to recognize the significance of
the drought and its relationship to past events. In the process of developing the
rule based, the managers formalized specific approaches to operation that allowed
consistent operation for the droughts duration. The 1987 drought required the
development of an improved rule base for operation that will aid future managers
when other droughts occur.

Acknowledgment This research was funded by the Seattle Water Department. Nu-
merous individuals at that agency contributed to this research including David Parkinson,
Rosemary Menard, Julia Cohan, and Lionel Sun. Robert Tull, currently of Camp, Dresser,
and McKee (San Francisco) made valuable contributions at the initiation of this project
and much of its success is due to his efforts. William McCarthy also deserves special thanks
for the generation and evaluation of linear programming data. The authors also wish to
acknowledge their good fortune in that the completion of this project coincided with the
most severe drought in the previous sixty-four years. This event brought a relevance to
the work which might otherwise have been lacking.

187
References

Borland International, (1985), Turbo Database Toolbox, User’s Manual, Borland
International, Scotts Valley, CA.

Borland International, (1985), Turbo Pascal Graphix Toolbox, User’s Manual,
Borland International, Scotts Valley, CA.

Fenves, S. J., (1986), ‘What is an Expert System,’ in Expert Systems in Civil
Engineering, Kostem, C. N. and Maher, M. L. (Eds.), American Society of
Civil Engineers, New York, N.Y.

Fenves, S. J., Maher, M. L. and Sriram, D., (1984), ‘Expert Systems:
C. E. Potential,’ Civil Engineering Magazine 54, 10, 44-47.

Hirsch, R. M., (1979), ‘Synthetic Hydrology and Water Supply Reliability,’
Water Resources Research, 15, 6, 1603-1615.

Level Five Research, (1985), INSIGHT2+ User’s Manual, Level Five Research,
Indialantic, FL.

Palmer, R. N. and Johnston, D. M., (1984), ‘Completion Report for
Optimization of Yield Analysis on Seattle Water Supply System,” Report to
Seattle Water Department, Seattle, WA.

Palmer, R. N. and Tull, R., (1987), ‘Expert System For Drought Management
Planning,’ Journal of Computing in Civil Engineering, ASCE 1, 4,
November, 284-297.

Palmer, R. N. and Holmes, K.J., (1988), ‘Operational Guidance During
Droughts: Expert Systems Approach,’ Journal of Water Resources Planning
and Management, ASCE 114, 6, November, 647-666.

Seattle Water Department, (1986), 1985 Conservation Plan in the 1985
COMPLAN, Vol. 6, Seattle Water Department, Seattle, WA.

Sunset Software Technology, (1987), XA, A Professional Linear Programming
System, San Marino, CA.

The Potential Use of Decision-Support Systems
for Integrated River Basin Management

D. G. Jamieson
Thames Water
Vastern Road, Reading
England

Abstract Proposals are made for the eventual real-time, near-optimal control of an
entire river basin for a wide-range of different functions including river management, water
supply and sewage disposal. A satisficing approach within a modular, hierachical control
framework is advocated. In this way, scarse resources can be allocated across competing
interests and the degree of conflict between non-compatible activities minimised.

1 Introduction

1.1 Background

Prior to the 1974 reorganisation of the water industry in England and Wales, river
basin management depended on cooperation between independent organisations.
In order to safeguard vested interests, there had to be prior agreement between
the various authorities which usually took the form of abstraction licences, dis-
charge consents, etc. While these arrangements worked reasonably well in normal
circumstances, they could be somewhat of a hindrance in times of stress, especially
if assistance to one aspect of river-basin management infringed an agreement on
another, since that was likely to be with a different organisation. Moreover, since
different organisations were only accountable for their own particular aspect, there
was little incentive to assist others over and above their prior commitment, however
sensible it might have been in the general interest.

Since the creation of water authorities, all aspects of river-basin management
have been vested in the one organisation. At least in theory, this could lead to a
more flexible operational policy based on objectives rather than agreements. How-
ever, a dynamic operating strategy which is continually updated in response to

189

B.H.V.Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 189-203.
© 1992 Kiuwer Academic Publishers.

190

changes in the system state and user interests would necessitate a more sophisti-
cated monitoring and control scheme than one following pre-set rules.

More recently, the Government has outlined its intentions for privatising the
water industry. In essence, the intention is to create a National Rivers Authority,
thereby separating the regulatory and river management functions from water sup-
ply and sewage disposal. Whilst at first sight, this runs contrary to the concept of
integrated river basin management, nevertheless a large element will of necessity,
have to continue. Therefore, rather than having a prescribed operating agreement,
the two organisations could adopt a common dynamic operating strategy.

1.2 Aims

The aims of this paper are as follows:

e to structure the general problem of operational river basin management by
identifying compatible and non-compatible interests;

e to review control techniques currently available and postulate developments;

¢ to propose a framework for the eventual real-time management of an entire
river basin system on an integrated basis.

1.3 Limitations

It is inevitable that an overview of this nature will be somewhat superficial and not
show due reverence to the many practical difficulties. Moreover, in certain aspects
the exposure of ideas for future operational control is somewhat premature since
these are the subject on ongoing research. Nevertheless, it is hoped that the overall
concept is not obscured by these shortcomings and that the approach adopted is
applicable elsewhere.

2 River basin management

2.1 Interaction

For the purposes of this paper, river basin management is defined in its broadest
terms and deemed to include all factors which relate to or impinge on the natural
drainage of a river system. The 1973 Water Act recognises that most aspects
of river basin management are inter-related and cannot sensibly be segregated,
particularly at an operational level. Therefore, any attempt of rational control
becomes an exercise in conflict management.

191

2.2 Component Parts

Within the overall water cycle, a multitude of separate facets can be identified but
space considerations restrict this paper to the following common uses of rivers:

e land drainage—natural and man-made;

e water supply—direct or via storage reservoir;

e sewage disposal—raw sewage or treated effluent;

e navigation—natural or maintained depth;

e hydro-power generation—conventional or low-head;
e cooling water—oil or coal-fired power stations;

¢ fisheries—angling and fish-farming;

e recreation and amenity.

2.3 Compatibility of Interests

Obviously, a river basin managed for one specific aspect may well provide inci-
dental benefits for some additional purposes but conflict with others. However,
the constituents of river-basin management can roughly be divided into conserva-
tion activities and disposal activities. Conservation activities include water supply,
navigation, hydro-power, recreation and amenity: disposal activities include land
drainage, sewage disposal and cooling water. In general there would seem to be
more common interests within each of these groups than between them. For ex-
ample, the effect of storage tends to be an asset for conservation activities but a
hindrance for disposal activities.

Such generalisations should not be stretched to the limit since some aspects of
disposal activities are not an embarrassment to conservation activities and may
well be a positive benefit as in the case of efluent disposal being used for down-
stream water supply. In fact, the more detailed any consideration of compatibility
becomes, the more inappropriate the simple classification is seen to be, since the
degree of fit depends on not only the particular interest but also the state of the
system.

3 Objectives

3.1 Traditional View

Where river-basin management objectives have been formalised in the past, it has
usually been a result of having to maintain statutory obligations or legal constraints

192

such as minimum residual flow, navigational depth, effluent consent standards, etc.
All considerations of the interactive nature of river-basin management are embraced
within the constraints themselves. This has produced management targets which
are static and therefore achievable with low-level technology.

However, even comprehensive pre-set operating rules are unlikely to be ‘op-
timal’ in any sense if no account is being taken of changes in the system state.
Recognising the inadequacies of the methodologies currently employed, considera-
tion has been given to ways of improving real-time control procedures albeit usually
on a piecemeal basis.

3.2 Difficulties

Unfortunately, it is a fact of life that the different interests in river basin manage-
ment have different criteria for assessing performance. Whilst minimising operating
costs could be an appropriate objective for managing a pump-storage reservoir, it
might not have much relevance to flood-alleviation where the objective is likely to
be minimisation of flood damage. At least these two objectives have a similar basis,
that of cost minimisation, whereas others such as fisheries or perhaps navigation
might not even be measured in financial terms.

3.3 Satisficing Approach

Bearing in mind the difficulties of formulating an objective function, it may well
be inappropriate to talk of ‘optimal’ operating procedures for an entire river basin.
Instead, a satisficing approach could be adopted. Here, the state of the system is
deemed satisfactory for specific interests provided it is within pre-defined bound-
aries for each activity (Fig. 1). If the system state lies within all those constraints,
minimisation of operating costs, say, would be the general objective. If, however, a
particular constraint is or about to be violated, then the objective specific to that
activity would take precedence.

For instance, if flooding was imminent (the upper-bound constraint on land
drainage about to be broken) then the flood mitigation objective of damage min-
imisation takes precedence over minimising operating costs (Fig. 2). If the depth
of water in a river did not meet the navigational requirement (a lower-bound con-
straint on navigation), water supply might have to draw on storage or use an
alternative source even if that was more expensive. Only if more than one set of
constraints were likely to be violated simultaneously (say, insufficient depth for nav-
igational requirements and no alternative source for water supply) would priorities
have to be assigned.

Of course, there is nothing new in this concept: it is merely formalising what
hitherto had been done intuitively. That being the case, there is a danger of simply
copying what is currently done manually and computerising the same procedures.

193

REAL-TIME OPERATIONAL CONTROL

T

. . ‘Acceptable
T TN\ Flow
- "\\\"/»\ \-\(/"’""‘Kx——-xﬁ Nitrates Range'
- ~—T NN N~ oo
x/ I~
7/ ~.
XFX\ XXX T~ Dissolved
hx/ Oxygen
\\\\\\\\\\\\\ "Minima’

—» Time

Objective function : minimise operating costs

Figure 1. Satisficing approach: Normal conditions.

194

REAL-TIME OPERATIONAL CONTROL

7 TDeeth “Maxima’

Flow

~—X— Nitrates
x\x‘_’X

’{ ‘Acceptable
— . /’(\"~x) Range’
——— / ;
\'\—/ x/\x\x — \,\
~N.
P x/"\hx/{\’kx T~ __ Dissolved
Oxygen
\\\\\\\\\\\\\\\ ‘Minima’
—» Time

Objective Function : Minimise Flood damage

Figure 2. Satisficing approach: Abnormal conditions.

195

However, this would be extremely short-sighted since with the advantages in mod-
ern management techniques, those procedures can almost certainly be improved.

4 Operational procedures

4.1 Automation

A pre-requisite to a more flexible operating policy which dynamically responds to
changes in the state of the system is quite obviously a definition of the present state.
Since it is important to minimise the delay between a change of state occurring
and the counteracting decision being implemented, SCADA is considered to be
essential.

Depending on what aspect of river-basin management is being considered, the
existing state of the system would be measure in terms of river levels, groundwater
levels, reservoir levels, sluice-gate settings, quantities pumped, pipe network pres-
sures, water-quality states, etc. The frequency of interrogation will be dependent
upon the response characteristics of the specific parameter, e.g. groundwater levels
require less frequent interrogation than, say, river flows. Similarly, the precision
of measurement required will also be a function of the specific parameter and its
response time.

In view of the complexity and the amount of information required even to define
the state of one particular constituent of river-basin management, it is unrealistic
to assume that any one person could assimilate, digest and utilise all the incoming
data At best, the manager would keep a close watch on a number of key variables
and ignore the rest.

For this and other reasons, it is expected that future control systems will have
a higher degree of automation than at present. This should not be interpreted to
mean replcing personnel by computers. On the contrary, the intention is to aug-
ment managers’ capabilities through decision-support systems about which more
will be said later. The role of the manager would be to oversee the control process
and take operational decisions. The role of the computer would be to establish the
existing state of the system, forecast the future state, assist with decision-making
and carry out control instructions.

4.2 Real-time Forecasting

In control engineering terms, the proposal is to treat river-basin management as
a feed-forward control system. That is to say, operational decisions are taken
on the expected future state of the system rather than the known present state.
Since perfect foresight cannot be assumed, there must be ability within the control
procedures for self-corrective action as a means of compensating the decisions for
the inevitable errors in the forecast.

196

What few examples there are of feed-forward control systems being used within
the water supply industry, usually base their forecasting procedures on determin-
istic models. The simulation models used have traditionally been adaptations of
explanatory models in which the algorithms purport to have physical reality in the
sense that they attempt to mimic the real system.

Basically, there are two options for deterministic modelling. In the direct ap-
proach, the differential equations of flow/diffusion are themselves approximated
(usually linearised) while in the systems approach, an equivalent operator is sub-
stituted as an approximation to the actual process. Whilst the systems approach
has the advantage of robustness (no instability problems with ill-conditioned equa-
tions), the direct approach has the better definition. Besides being time-invariant
in the sense that the parameters once estimated are assumed constant, both ap-
proaches, particularly the direct approach, are computationally tedious and not
particularly suited to real-time use.

Various attempts have been made to improve the forecasting ability of such
models. This has usually involved restructuring portions of the model to make it
more complex. However, for operational control purposes, the requirement is for a
reliable forecast of future events rather than a detailed understanding of the pro-
cesses involved. For this reason, there has been growing interest in using techniques
such as Kalman filtering as a means of improving forecasting procedures (Fig. 3).
Amongst other things, these techniques include recursive parameter estimation so
that discrepancies between the predicted and actual values are compensated as the
forecasts are updated.

4.3 Optimal Control

Operational decisions in river-basin management are seldom simple and even more
rarely optimal. At the present time, dynamic programming in one form or another
is still perhaps the most commonly proposed decision mechanism for real-time
use. However, in common with other optimal control techniques, the scale of the
problem that can be considered is often curtailed by the limited computing facilities
available.

The size of analtyical problem that can be realistically accommodated with
the necessary level of detail is probably restricted to an individual subsystem such
as a group of reservoirs or a series of river control weirs. To date, generalised
control procedures have only been attempted for a limited number of subsystems
and an entire river basin may comprise hundreds. Even if it were assumed that all
subsystems were operated in an optimal fashion, obviously it does not necessarily
follow that the entire system is optimally controlled.

Despite the fact that the research literature abounds with hypothetical exam-
ples of optimal control as applied to water resources, there is some doubt whether
optimal control in the strict sense is justified, never mind possible, even for individ-

REAL-TIME OPERATIONAL CONTROL

observed

forecast

(/) mol4

g8 9 10 11 12 13 14 15 16 17
Days

Figure 3. Use of extended Kalman filter for forecasting (2-step
ahead).

197

198

ual subsystems. Looking to the future, perhaps emphasis will be placed on simpler
control procedures which approximate the optimal decision to a degree where it
makes little or no practical difference.

4.4 Hierarchical Control

Given that for the foreseeable future, anything approaching optimal control will
be restricted to individual subsystems, there is an obvious problem in attempting
to manage an entire river basin. However, if subsystem controls were capable of
adapting to meet targets imposed by a more general control strategy, it is possible
that this would provide an adequate approximation of optimal control for the entire
system.

Three tiers of decision-making have been recognised namely strategic, tactical
and local corresponding to the three levels of management, Headquarters, Divisions
and Works. Whereas strategic decisions are confined to what is to be achieved,
tactical control relates to how those targets are to be achieved. Thereafter, it is
left to individual subsystems to implement the instructions received (Fig. 4). If for
any reason, a Division or Works is unable to comply with its set-point, a feedback
loop is activated and revised directives issued.

5 Implementation

5.1 Generalised Control Modules

Decomposing the system into inter-dependent subsystems clearly makes integrated
river-basin management a more tractable proposition. Rather than repeatedly
developing similar procedures for the same type of subsystem at different locations,
the aim has been to formulate generalised computer packages which can be used
throughout the region with minimal adaption. In the first instance, three such
modules have been considered:

e river management (near-optimal control of abstractions, releases and im-
poundments);

¢ water supply management (near-optimal control of water treatment and
distribution);

¢ sewage disposal management (near-optimal control of sewage treatment
and effluent discharges).

The idea was that, initially, these procedures could be used for operating in-
dividual subsystems. If, however, they were to be developed within a common
framework, as was the intention, this preserved the option of subsequently linking

REAL-TIME OPERATIONAL CONTROL

Regional
Headquarters

4

feedback | targets
|

I y

Divisions

¥

feedback : set points

Works etc.

Strategic level
(periodic update)

Tactical level
(lapse time control)

Local level
(real-time control)

Figure 4. Different levels of decision-making.

199

200

appropriate modules to the strategic and tactical decision mechanisms, thereby
introducing an element of integration.

5.2 User Interface

Rather than regard optimal control techniques and knowledge-based systems as
rivals, the case is made for combining their different attributes to complement
each other. By their very nature, optimal control techniques are not particularly
user-friendly. Nor can uncertainty and other practicalities be easily incorporated
into the algorithms. If, however, an expert system were used to interpret the results
of the control algorithms, this would provide an enhanced level of understanding
which could be readily assimilated by the manager.

5.3 Application

To illustrate the overall concept proposed with a hypothetical example, Fig. 5
depicts some typical elements of a multi-functional river basin. The system shown
comprises a pair of pumped-storage reservoirs, an unconfined aquifer and three
demand centres, each having water supply and sewage disposal responsibilities.
Whereas two of the demand centres are reliant on a single source, the third can
use the aquifer and river conjunctively. Besides water supply an sewage disposal,
it is assumed the other activities include pollution control and flood warning to
support the fisheries and navigation functions.

Figure 6 shows a schematic representation of the proposed control scheme cor-
responding to the hypothetical system given in Fig. 5. At a strategic level, the
aim would be to set broad targets, allocating scarce resources between competing
interests and minimising the degree of conflict between non-compatible interests.
An attempt has been made to formulate this as a multi-functional, non-linear
optimisation problem which is solved using a projected Lagrangian algorithm at
a monthly time-step. At a tactical level, which can be multi-functional or single
function depending upon the organisational structure, short-term control strategies
are devised having regard to the targets set and the forecast state of the system.
To that end, linear programming has been used to define the operating regime on
an hour-by-hour basis over the next 24 hours. Thereafter, it is left to the local level
to follow the set point by manipulating the control equipment. In that respect,
dynamic programming has been used as a decision-aid.

201

Jajinby pauljuooun

JUIBIISUOD MO|} WNWIUWN e
119M 0JIUOD JBAlY ==

uonels Buidung e

[
3HIN3O
ANVW3a

JIoAJasaYy
abelojg-padwng

wenyz [| \

3HINIO
ANVN3IQ

3YINIO
ANVW3d

JIOAJ8SaY
abeuojs-pedwnd

JOHLNOD TYNOILLYH3dO 3FNIL-TV3H

Figure 5. Hypothetical multi-functional division.

202

REAL-TIME OPERATIONAL CONTROL | —,_, N \s\ﬁw

i

W REGIONAL OFFICE
\ H
RESERVOIR WATER SUPPLY Q
MANAGEMENT [~ MANAGEMENT
MODULE MODULE ~— ‘_wl
1 Y
w
41 SEWAGE 2
DISPOSAL 8
MANAGEMEN
N MODULE W N ﬁ z
RESERVOIR WATER SUPPLY z
ﬂ MANAGEMENT > MANAGEMENT g
MODULE MODULE &
RIVER MANAGEMENT MODULE y :
r4
SEWAGE o
% DISPOSAL gl W
MANAGEMENT >
RIVER MANAGEMENT MODULE MODULE a
A /V/
g P B o} t I
WATER SUPPLY SEWAGE
DIVISIONAL MANAGEMENT DISPOSAL RIVER MANAGEMENT MODULE TV
CONTROL MODULE MANAGEMENT
CENTRE V/ \ MODULE 4
..*.l AQUIFER

MANAGEMENT 'ull.'_ RIVER MANAGEMENT MODULE

MODULE

Figure 6. Corresponding divisional control system.

203

6 Conclusion

6.1 Prospects

Up until recently, most control schemes within the water industry could at best be
described in euphemistic terms as fragmented. There was little or no consistency
of approach, let alone compatibility of hardware, software or even communication
protocols. Telemetry was simply used for data acquisition rather than an integral
part of a control system. All of the decision-making and much of the control was
manual. However, that is changing rapidly. The need for improvements to effi-
cient and effectiveness coupled with the availability of competitively-priced control
equipment will inevitably lead to higher levels of automation.

6.2 Epilogue

These proposals may seem ambitious at first sight. However, one should anticipate
that sophisticated control systems will be commonplace by the turn of the century.
The point in question is not whether the industry will introduce improved control
procedures, but how. The choice seems to be either drifting into automation in
a piecemeal fashion or making a conscious effort to introduce an overall control
strategy. This paper advocates the latter and outlines how it might be achieved.

INLET: Access to Water Resources
Management Data Through a Natural
Language Interface

Richard N. Palmer and Lynn R. Spence

Department of Civil Engineering
University of Washington
Seattle, Washington

United States of America

Abstract This paper describes the development of INLET, an Interactive Natural Lan-
guage EnvironmenT, that allows convenient, rapid, and extensive access to water resource
management data. This system is designed to require a minimum of training, making it
immediately useful for water managers who do not have the time or interest to be trained
in the use of traditional databases. INLET consists of a natural language processor that
accepts commands posed to it in ordinary (conversational) English and a menu-driven
query system. By using simple English commands, water resource managers and staff who
are not familiar with either a formal database query system or computer programming can
easily access hydrologic and management data and can use the analytical, statistical, and
graphical capabilities provided by INLET.

This paper discusses the use of natural language interfaces and the role they play in
improving the use of computer models. Next, the INLET system is described along with
the water resources database. The paper concludes with a summary of INLET’s use and
potential improvements.

1 Water Resources Planning Models

One of the largest obstacles in using computer models as decision-making tools
in the practice of water resource management is the lack of confidence and un-
derstanding managers have in the models. The increasing availability of mini and
micro-computers and interactive software has made involvement of managers in all
phases of model specification, development, and verification more feasible in recent
years (Fedra and Loucks, 1985). A key feature of these decision-aiding systems is
the direct involvement of policy analysts in an interactive policy-making process.
An important step towards direct involvement of policy makers is the use of highly

205

B.H.V.Topping (ed.),
Optimization and Artificial Intelligence in Civil and Structural Engineering, Volume II, 205-215.
© 1992 Kluwer Academic Publishers.

206

user-friendly interfaces to models and data.

User-friendliness can be defined as characteristics of a computer or of software
that allow them to be used without the knowledge of any classical programming
languages. Menu-driven programs are an example of one type of user-friendliness.
User-friendliness also applies to more general aspects of models such as semantic
and syntactic consistency (which ensures that the model captures both the in-
tended meaning and syntax) graceful (and instructive) recovery from failures, and
a wide assortment of input-output devices. A user-friendly interface requires the
underlying software to be easily understood, well structured, and compatible with
the mental processes of the users (Loucks et al., 1985; Hendler and Lewis, 1988).

Artificial intelligence (AI) tools are becoming increasingly popular for develop-
ing user-friendly interfaces compatible with the user’s cognitive process. Two of
the most common Al tools meeting this need are expert systems and natural lan-
guage interfaces. The topic of this paper is the development of a natural language
interface applied to a water resources database.

2 Natural Language Processing

Natural language processing can be defined as the ability of a computer to process
language that humans use in ordinary discourse (such as English). A primary goal
in natural language processing is to translate a potentially ambiguous input phrase
into a precise form that can be directly interpreted by a computer system. This
translation process, called parsing, is performed in many ways. Obermeier (1987)
has classified the types of parsers that have evolved into five groups: grammar-
based, semantic, pattern-matching, knowledge-based, and neural-network parsers.
These groups are defined by the approach taken when parsing a natural language.

Parsers may analyze syntax or semantics or both. Syntax refers to the rules
governing the order of the symbols. Semantics, on the other hand refers to the
intended meaning of the expression. Computers can easily interpret syntax, but
are poor at resolving semantics. Standard language has a prescribed, although
sometimes variable, syntax defined by rules.

3 Grammar Parsers

Grammar-based parsers are concerned primarily with the syntax of the sentence,
that is, the order in which the words appear and their grammatical definition.
Grammar-based parsers use a set of rules that describe the types of sentences
acceptable for that particular language. For example, two simple rules are:

S—-NP+VP
S—-VP

207

where S is the symbol for sentence, NP is the symbol for noun phrase, V P is the
symbol for verb phrase, and — is the symbol for ‘is defined as.” These rules, called
rewrite rules or production rules, define a sentence to have a noun phrase and a verb
phrase, or just a verb phrase by itself. These noun and verb phrases are themselves
composed of smaller phrases. These phrases can, in turn, be decomposed until only
the essential building blocks of grammar remain: individual words. Grammar-
based parsers use all the words found in a sentence and also consider the phrasing
in which the words appeared. They are good for generating natural language text
and for determining sentence structure. For natural language systems used as
interfaces to databases or expert systems, however, the semantics (or meaning) of
the sentence, also must be considered in order to correctly perform the request.

4 Semantic Parsers

Semantic parsers attempt to find the meaning of the sentence, rather than just
concentrate on syntax like the grammar-based approach. In semantic parsers, the
rewrite rules are stated in terms of ‘semantic classes’ describing the meaning of the
word, rather than word classes (ie. verb or noun) like the grammar-based parsers.
For example a sentence could be represented by the following: <SENTENCE> ::=
<PERSON> is eating <FOOD>. In this example, <PERSON> and <FOOD>
are semantic classes for which words like ‘Carla’ and ‘pasta’ can be substituted
to create a valid sentence. An advantage to semantic parsers is that the size of
these semantic classes is generally much smaller than the size of an equivalent word
class, resulting in a much more efficient parsing strategy. A disadvantage of using
semantic grammar is that it is not easily transferrable from one domain to another.

5 Pattern-matching Parsers

Pattern-matching parsers include some of the earliest parsers developed. They
look for a linguistic pattern in a sentence without using explicit grammatical rules.
When processing a sentence, this type of parser attempts to match the input with
a fixed number of patterns. If a match is found, the system performs a specified
action. Pattern-matching parsers are popular as interfaces to databases because
database commands can usually be decomposed into patterns and keywords.

Green et al. (1961) developed one of the first natural language interfaces to
a database. His system, BASEBALL, provided access to information about all
baseball games played in one season. Lane (1987) developed a natural language
interface to DOS using Prolog. His system used a noise-disposal parser in which
non-key words were ignored. The list of keywords were then matched with possible
command patterns to determine the meaning of the input.

208

The primary advantages of a natural language interfaces (NLIs) over a menu
system are (Hayes, 1986):

1. Natural language interfaces are typically more versatile, they can answer a
wider range of questions.

2. Natural language interfaces can be more direct. To access complicated data
with the menu system would require selecting many menus.

3. Natural language interfaces take less time for the user in many complex
situations.

4. Natural language interfaces allow users to formulate questions in a manner
that is consistent with the way they think about the problem.

Some disadvantages of natural language interfaces are that they may be very frus-
trating if help is not provided and the user is unfamiliar with the system domain.

6 INLET, A Natural Language Environment

INLET, the topic of this paper, uses an approach similar to Green et al. (1961)
and Lane (1987) and is applied to a water resources database. The database
contains streamflow data and optimal reservoir operating policies generated from
a drought management model developed for the Seattle Water Department (Palmer
and Holmes, 1988; Palmer and Tull, 1987). INLET uses a noise-disposal parser
to find keywords, match them with a command pattern and then perform the
command. A noise-disposal parser requires a strict sentence format (an ordering of
the keywords), but it will accept a wide variety of sentences as long as the necessary
keywords are present (Schildt, 1987).

The Seattle Water Department (SWD) provides direct service to 541,000 Seattle
residents and is a wholesaler to 549,000 residents of King County (SWD, 1986).
Water is taken from two major sources, the Tolt and Cedar Rivers, both of which
originate in the Western Cascade Mountains. In recent years there has been a
growing concern that the demand for water in this region has approached the safe
yield of the supply system. This concern has, in turn, lead to increased interest
in the proper management of these resources and the development of operating
strategies for the system during droughts. To guarantee an orderly response to
water shortage, the SWD developed the Water Shortage Response Plan (WSRP).
This plan addresses problems related to the 1-in-50 year drought event (SWD,
1986). The objective of this plan is to maintain essential services while minimizing
the net economic loss during a drought event.

INLET has two components: a natural language interface and a menu-driven
interface. Both components provide direct access to the data and provide statisti-
cal and plotting capabilities. Both of these components are easily accessible from

209

the other. Two types of data have been placed in INLET: hydrologic data and
system management data. Monthly streamflow data for seven sites in the Seattle
watershed provide historic hydrologic information. A database of system yield and
management information is also included. System yield and potential economic
losses have been calculated for a wide variety of potential conditions. These con-
ditions include five monthly starting periods, nine storage levels, and 47 different
hydrologic records (years 1929-1976). These two thousand scenarios were evalu-
ated in a linear program. In addition, the optimal operating policy chosen from
the WSRP for a sixteen week period was also calculated using the linear program
for some 400 specific low-flow periods. All of this information is available with
INLET.

INLET is written in Prolog. Prolog differs greatly from standard engineering
computer languages such as Fortran or Pascal. Programming languages can be
described as either procedural or descriptive. In procedural languages such as
Fortran, program execution is sequential; it follows the order of the commands
found in the source code. Prolog is a descriptive or ‘data-driven’ language. A
Prolog program is essentially a database with a series of rules for analyzing the
data. The control of execution is determined by the specific data in the database
and the rules, not by a fixed algorithm. This allows the execution procedure to be
dynamic; the procedure will vary depending on the data contained in the database.

Prolog supports recursive functions. Recursion is the process of a function call-
ing itself or executing itself. Prolog also supports symbolic processing. Symbolic
processing allows a problem to be solved by strategies and heuristics for manipu-
lating symbols rather than using defined numeric algorithms.

7 INLET’s Natural Language Processor

INLET’s natural language processor reads an input sentence and translates it into
a command the computer can execute. It is also responsible for answering the
query in a full sentence, providing it is not a plot. INLET uses a noise-disposal
parser to scan the input sentence, evaluate keywords and dispose the non-essential
words (noise). The keywords are then matched to a pattern and the command is
performed.

INLET recognizes words from the following keyword groups:

<command> <statistic> <site> <month 1>
<month 2> <year 1> <year 2>

The words in the brackets are the names of the word classes. The brackets indicate
that the keyword inside is optional. The keywords can appear in the sentence in
any order. Some example sentences that can be answered are:

210

What is the mean flow at Cedar 1 for June from 1960 to 19687

What is the standard deviation?

List all the flows at the main stem of the Tolt for 1972.

Plot the site 15 flows for May all years.

At site 7, what is the lowest flow for all the years on record?

Sum the flows from June to September for 1969.

Given reservoir storage at 30%, what is the system yield starting with May 1?7
What is the economic loss?

The command keywords that INLET recognizes are: what, plot, show, help,
list, and storage. If no command keyword is found and context is unable to be
determined, a default value of ‘what’ is used. The statistics available are: mean,
standard deviation, skew, cdf, lowest, highest, all, sum economic loss and yield.
Many of these keywords have synonyms which are also recognized by INLET. Not
all the keywords need be present in order for the sentence to be processed. When
some keywords are missing, the processor either uses the default values, or assumes
that the question was asked in the same context as the previous question. In this
later case, keywords from the previous sentence are used for the missing ones.

The Prolog code for the natural language processor consists of three main com-
ponents: (1) clauses for parsing the sentence, (2) clauses defining the lexicon (dic-
tionary) containing the words recognized by INLET and their associated synonyms,
and (3) clauses used to determine the command for that particular grouping of key-
words and the context of the sentence.

The first group of clauses contains all the clauses associated with reading the
sentence and selecting the words recognized by the system. This is accomplished
by reading each word, one by one, and evaluating the clauses contained in the
lexicon. If the word is not one contained in INLET’s dictionary, it is ignored and
the parser moves to the next word. If it is recognized, the parser uses the lexicon
to determine the word class to which it belongs. It then evaluates the keyword by
examining the synonym clauses in the lexicon. For example, the word ‘average’ is
a synonym for ‘mean.” Both of these words are recognized by INLET and belong
to the word class ‘statistic,” but ‘mean’ is the actual keyword used by the system.
If the parser encounters ‘average,’ it finds that it is a statistic and the associated
keyword is ‘mean.’ ‘Mean’ is then passed to the clause that actually executes the
command.

Some keywords are not single words, for example ‘Site 1.’ In this case, the
actual word recognized by INLET is ‘site.” When the system encounters ‘site,’
however, it expects to find a number after ‘site.’ INLET then reads the next word
to see if it is a number. If so, this number is used to determine the keyword for
that particular site.

The third group of clauses translate the list of keywords into the command.
One of the rules used is:

211

If the command is plot,

and the statistic is all,

and the site is known,

and the monthl is known,

and month2 is none,

and yearl and year2 are both none,
then plot all the flows for month1 at site.

In this example the variables are italicized and the values of the known keywords
are in bold. There are many clauses in this group for processing all the types of
commands that INLET performs.

There are also clauses that determine what to do when not all of the keywords
are present. For example, INLET does not require the user to specify the site
name each time. Once a site has been selected it remains active until another site
is mentioned. If a site is not mentioned in the input sentence, INLET assumes that
the previous site is the current one. INLET also determines the meaning of the
sentence in context with the previous sentence.

To illustrate this process, suppose the following two commands were given:

‘Plot the May flows at the North Fork of the Tolt.’
‘Plot them at the South Fork.’

In the second sentence, the user most likely intended for the May flows at the
South Fork of the Tolt to be plotted. The second sentence is within the context
of the previous sentence. The only words recognized by INLET in the second
sentence, however, are ‘plot’ and ‘South Fork.’ This is an ambiguous command for
INLET because no time period or month is specified. In this case, INLET refers
back to the keywords used in the previous sentence to find the right keywords to
use, i.e. ‘may.’

Context determination is made possible by storing the keywords from the pre-
vious sentence in Turbo Prolog’s internal database. An internal database is a
collection of clauses that can be added to, or retracted from while a program is
running. INLET creates an internal database containing a ‘context’ clause. If
insufficient keywords are present for INLET to determine the meaning of the sen-
tence, the context clauses are evaluated to determine the values of the missing
keyword(s). After all required keywords are assigned values, the previous context
values are retracted and the new context is asserted into the database. For exam-
ple, if a keyword for site name is not found in the current sentence, the program
searches the context clause to find the keyword from the previous sentence and
then asserts the site name to be equal to the previous one.

Context dependency is an essential feature of INLET that is often not available
in simple natural language processors. This feature is extremely valuable for in-
creasing the user friendliness of the program and decreasing the number of words
required to express a command.

212

INLET also has a menu-driven system which can serve as a review of the op-
tions available for queries. This menu system is accessed from the natural language
processor by entering <ESC>. The menu system offers the same statistical and
plotting capabilities as the natural language processor. The optimal reservoir op-
eration data, however, are not available through the menu system. These more
complicated questions would require a large number of menus and are easily acces-
sible from the natural language processor.

When INLET is activated, the user initially is provided a menu listing three
options. Those options allow access to the natural language system, the menu
system, or to DOS. Although the features available with either the menu system
or the natural language system are similar, their use is very different. Menu-driven
systems allow a user to choose one or more items from a list of items. The selection
of the items typically is accomplished either with a mouse or by moving a cursor.
When commands are hierarchical, (that is, several steps are required), numerous
menus must be evaluated to complete a command.

For instance, suppose one wishes to plot all of the data at a particular stream-
flow gauging site using the menu system. The user first indicates the site location,
next that a plot is desired, next, the time period for which the data should be
included, and finally, the data type (all data, or just data for one month, etc.). In
this process the user is required to select from four menus.

The natural language interface provides the user with a completely different
approach to this process. The user types the command such as, ‘Plot the June
flows at Site 1 from 1950 to 1960.” All of the information needed is contained in
the single command. Unlike the menu approach, the user gives the command to
the computer just as he might naturally state the command.

8 Typical INLET Session

Consider a situation in which a water manager finds himself in a particular
month, with low streamflows, and the reservoir system at thirty percent of its
capacity. The manager is interested in a variety of information including:

1. How unusual are the current streamflows?
2. How likely are the low flows to continue?

3. What is the probability of flows being as low as the ones currently
experienced?

4. Should water use restrictions be initiated?

5. When should restrictions be initiated and how stringent should the
restrictions be?

213

It is possible that a wide range of other questions may occur to the manager. It
is also likely that the order in which the manager wishes questions to be answered
will vary from one session to another. The setting that is suggested here is a
common one. A somewhat unusual event (low streamflows) has occurred and the
manager wishes to place this situation into a context that will help him develop a
reasonable response plan.

The purpose of INLET is to allow the manager to pose these questions in any
order that he cares to and to analyze the situation to the extent necessary. INLET
accomplishes this by providing the wide range of statistical analysis tools previously
described, access to the operational database, and total flexibility in the extent and
order in which the analysis is made.

After reviewing recent streamflows and the current storage levels of his system,
the water manager’s first step is to find the mean and standard deviation of the
June flows. He decides to use the menu system first. From this menu, the user
chooses the menu-driven system. Next, a menu appears containing the statistics,
plotting and site selection choices. From this menu, he chooses site selection and the
site menu appears. After choosing a site, the site menu automatically disappears
and the user is returned to the second menu from which he selects ‘Statistics.” The
statistics menu appears providing statistical options: mean, standard deviation and
skew. After choosing mean, a menu appears with the time period options: month,
year, or specify time period. He chooses each option in turn to find the mean of all
the June streamflows on record, the mean of 1972, and the June mean from 1950 to
1960. The answers to these selections are displayed in a window covering the top
half of the screen. To find the standard deviation, the user would enter <ESC>
until he is back at the statistics window. From there he would choose ‘Standard
Deviation’ and repeat a similar process to that of specifying the time periods when
he determined the various means.

Having evaluated the basic statistics, the user now wants to view two plots, a
time series plot of the June flows and the cumulative distribution function of those
flows. He returns to the second menu. From that menu, he chooses ‘Plotting.” A
system of menus appears from which he selects the time period to plot. He specifies
that he wants a time series plot of monthly streamflow data for all years on record
for the month of June. From this figure the manager recognizes immediately the
high variability of the June streamflows.

Next, the manager wants to view a cumulative distribution function (CDF) of
the June streamflows. He presses the escape key until the menu with ‘Cumulative
Distribution Function’ appears. After choosing this option, a similar set of menus
appears to that of the time series plot, and he specifies the month and desired time
period. From the CDF, the user can compare the current streamflow to a ranking
of all the streamflows on record.

By pressing any key, the user returns to the second menu. He decides to plot
all the streamflows for the year 1970. He chooses the ‘Plotting’ option from the

214

second menu and year from the next menu that appears. He then specifies ‘1970’
and hits return.

The user now decides that he wants to use the natural language system and ask
some similar questions for comparison with the menu-driven system. He enters the
escape key until he is at the main menu where he chooses the first option, ‘Natural
Language Interface.” In the query window the user enters his questions about the
mean and standard deviation for the June flows:

What is the mean flow for June at site 1?7

What about site 57

Between 1950 and 19607

What is the standard deviation for this period?

What is the lowest flow in June?

Plot all the streamflows on the North Fork Tolt between 1950 and 1970.
Plot the cdf.

It should be noted that the questions are posed in simple English statements.
The responses by INLET provide a complete reply and answer to the questions.
The last two requests generate plots. The user returns to the natural language
system by entering any key.

After carefully reviewing the flow data, the user decides he now wants to analyze
some reservoir operation policies. From his previous analysis of streamflow data,
he determines that the current flow conditions are similar to those experienced in
four different historic sequences, 1930, 1938, 1954, and 1959. To investigate the
optimal operating pattern associated with those time periods, the user wishes to
review the appropriate data. To do so, the user enters ‘Please show the operating
policies for June, 1930, with initial storage of 30%.’ This request generates a bar
chart showing the optimal restriction levels for that year. After reviewing the
restriction policies for 1930, the user can review those of 1939, 1954, and 1959.

9 Results and Conclusions

The evolution toward more user-friendly software will allow managers to partici-
pate effectively in model development and use. This is important because it in-
creases communication between model developers and managers. With increased
communication, models can be developed that will more directly serve their users.

Prolog has been demonstrated to be an ideal language to develop user-friendly
software. It makes natural language processing possible in an efficient and fast
manner. This suggests that more engineers should become familiar with non-
procedural programming languages.

INLET allows novice computer users access to complex data and provides very
useful statistical and plotting capabilities. This has significant implications on the
use of such models by water resource managers. These managers are now able

215

to explore a large number of operational policies and their impacts on system
reliability with ease.

References

Fedra, K. and Loucks, D. P., (1985), ‘Interactive Computer Technology for
Planning and Policy Modeling,” Water Resources Research 21, 2, 114-122
(February).

Green, B., Wolf, A., Chomsky, C. and Laughery K., (1961), ‘BASEBALL: An
Automatic Question Answerer,” Proceedings of the Western Joint Computer
Conference 19, pp. 219-224.

Hendler, J. and Lewis, C., (1988), ‘Introduction: Designing Interfaces for Expert
Systems,’ in Expert Systems: Designing the User Interface,
J. Hendler (Ed.), Ablex Publishing, Norwood, NJ, pp. 1-13.

Lane, A., (1987), ‘DOS in English,” BYTE, December, 1987, pp. 261-263.

Loucks, D. P., Kindler, J. and Fedra, K., (1985), ‘Interactive Water Resources
Modeling and Model Use: An Overview,” Water Resources Research 21, 2,
95-102, (February).

Obermeier, K. K., (1987), ‘Natural-Language Processing,’” BYTE, December,
pp. 225-233.

Palmer, R. N. and Holmes, K. J., (1988), ‘Operational Guidance During
Droughts: Expert System Approach,” Journal of Water Resources Planning
and Management 114, 6, 647-666, (November).

Palmer, R. N. and Tull, R. M., (1987), ‘Expert System for Drought Management
Planning,’ Journal of Computing in Civil Engineering 1, 4, 284-297,
(October).

Schildt, H., (1987), Advanced Turbo Prolog, McGraw-Hill Inc., Berkeley, CA.

Seattle Water Department, (1986), Seattle Comprehensive Regional Water Plan,
1985 COMPLAN, Vol. 6, Seattle Water Department, Seattle, WA.

Learning from Optimal Solutions to
Design Problems !

John S. Gero, Conrad A. Mackenzie and
Sally McLaughlin

The University of Sydney

NSW Australia

Abstract Designs can be described by the morphism between two descriptor sets: deci-
sions and performances. Characterised designs are those in which both decisions and their
consequent performances are articulated. Pareto optimization is discussed as a means of
structuring performances and decisions. The induction algorithm ID3 is presented as a
means of abstracting general relationships from characterised designs. An example from
the domain of building design is presented.

1 Introduction

Design is characterised by decisions which generate solutions that are best in some
sense. If it is impossible to achieve the best in all design objectives, then the solution
should exhibit a satisfactory compromise. This introduces the notion of design
optimality and its use as a means of structuring design information so that one
can learn about design decision making. This paper is concerned with extracting
knowledge about decision/performance relationships from hypothetical or exisiting
designs by structuring design data through optimization. It is assumed that the
choice between design decisions must be made on the merits of their consequences.
The problems which are addressed are usually complex in the dimensional sense
(which makes them difficult to represent and solve) because of the many constituent
criteria and constraints that have influence over the solution. It must be noted
that for problems that involve conflicting objectives, a single optimal solution is
unlikely to exist. However, a set of solutions can be identified that are all optimal

1This lecture draws directly from the following papers: Mackenzie, C. A. and Gero, J. S., (1987).
‘Learning design rules from decisions and performances,’ Artificial Intelligence in Engineering 2, 1,
2-10, and McLaughlin, S. and Gero, J. S., (1987), ‘Acquiring expert knowledge from characterised
designs,” AIEDAM 1, 2, 73-87.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>